来一场栈的大模拟(主要是单调栈)
一.栈模拟


二.单调栈求最大矩形面积

通常,直方图用于表示离散分布,例如,文本中字符的频率。
现在,请你计算在公共基线处对齐的直方图中最大矩形的面积。
图例右图显示了所描绘直方图的最大对齐矩形。
输入格式
输入包含几个测试用例。
每个测试用例占据一行,用以描述一个直方图,并以整数 n 开始,表示组成直方图的矩形数目。
然后跟随 n 个整数 h1,…,hn。
这些数字以从左到右的顺序表示直方图的各个矩形的高度。
每个矩形的宽度为 1。
同行数字用空格隔开。
当输入用例为 n=0 时,结束输入,且该用例不用考虑。
输出格式
对于每一个测试用例,输出一个整数,代表指定直方图中最大矩形的区域面积。
每个数据占一行。
请注意,此矩形必须在公共基线处对齐。
数据范围
1≤n≤100000
0≤hi≤1000000000
输入样例:
7 2 1 4 5 1 3 3
4 1000 1000 1000 1000
0
输出样例:
8
4000
思考:这个题为什么可以用单调栈呢:
例如:栈中有1,4,6而这时来了一个3,你会发现有1和将要插入的3的时候这个4,6是用不着的,这是4和6就可以出栈,这不就是一个单调递增的栈吗?
代码:
#include<iostream>
#include<algorithm>using namespace std;const int N = 100010;//l[i], r[i]表示第i个矩形的高度可向两侧扩展的左右边界
int h[N], q[N], l[N], r[N];typedef long long ll;int main()
{int n;while(scanf("%d", &n), n){for(int i = 1; i <= n; i ++) scanf("%d", &h[i]);h[0] = h[n + 1] = -1;int tt = -1;q[++ tt] = 0;for(int i = 1; i <= n; i ++){while(h[q[tt]] >= h[i]) tt --;l[i] = q[tt]+1;q[++ tt] = i;}tt = -1;q[++ tt] = n + 1;for(int i = n; i; i --){while(h[q[tt]] >= h[i]) tt --;r[i] = q[tt]-1;q[++ tt] = i;}ll res = 0;for(int i = 1; i <= n; i ++) res = max(res,(ll)h[i]*(r[i]-l[i]+1));printf("%lld\n", res);}return 0;
}


三.升级题
一.Maximal submatrix

代码:
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn=5e3+7;
int mp[maxn][maxn];
int mark[maxn][maxn];
int h[maxn];
int q[maxn];
int l[maxn];
int r[maxn];
int n,m;
int solve(int h[]){h[0]=h[m+1]=-1;int tt=-1;q[++tt]=0;for(int i=1;i<=m;i++){while(h[q[tt]]>=h[i]) tt--;l[i]=q[tt]+1;q[++tt]=i;}tt=-1;q[++tt]=m+1;for(int i=m;i;i--){while(h[q[tt]]>=h[i]) tt--;r[i]=q[tt]-1;q[++tt]=i;}int res=0;for(int i=1;i<=m;i++){res=max(res,h[i]*(r[i]-l[i]+1));}return res;
}
int main(){ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);int t;cin>>t;while(t--){cin>>n>>m;for(int i=1;i<=n;i++){for(int j=1;j<=m;j++){cin>>mp[i][j];}}for(int j=1;j<=n;j++){mark[1][j]=1;for(int i=2;i<=n;i++){if(mp[i][j]>=mp[i-1][j]){mark[i][j]=mark[i-1][j]+1;}else{mark[i][j]=1;}}}int ans=0;for(int i=1;i<=n;i++){ans=max(ans,solve(mark[i]));}cout<<ans<<'\n';}system("pause");return 0;
}
二. 与上题类似

这个题就是维护一个h[i][j]和l[i][j]和r[i][j],最后的答案就是max(h[i][j]*(r[i][j]-l[i][j]+1)),按上一道题做法也行。
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
const int maxn=1e3+100;
char s[maxn][maxn];
int a[maxn][maxn];
int up[maxn][maxn];
int l[maxn][maxn];
int r[maxn][maxn];
int q[maxn];
int main(){int n,m;cin>>n>>m;for (int i = 1; i <= n; i ++ ){for(int j=1;j<=m;j++){cin>>s[i][j];if(s[i][j]=='F'){a[i][j]=1;}}}for(int i=1;i<=n;i++){for(int j=1;j<=m;j++){if(a[i][j]){up[i][j]=up[i-1][j]+1;}else{up[i][j]=0;}}}for(int i=1;i<=n;i++){int tt=-1;up[i][0]=up[i][m+1]=-1;q[++tt]=0;for(int j=1;j<=m;j++){//维护单调递增的栈while(up[i][j]<=up[i][q[tt]]) tt--;l[i][j]=q[tt]+1;q[++tt]=j;}tt=-1;q[++tt]=m+1;for(int j=m;j>=1;j--){while(up[i][q[tt]]>=up[i][j]) tt--;r[i][j]=q[tt]-1;q[++tt]=j;}}int ans=0;for(int i=1;i<=n;i++){for(int j=1;j<=m;j++){//cout<<i<<" "<<j<<" "<<l[i][j]<<" "<<r[i][j]<<" "<<up[i][j]<<endl;ans=max(ans,(r[i][j]-l[i][j]+1)*up[i][j]);}}cout<<ans*3<<endl;
}
三.移动列
给你一个二进制矩阵 matrix ,它的大小为 m x n ,你可以将 matrix 中的 列 按任意顺序重新排列。
请你返回最优方案下将 matrix 重新排列后,全是 1 的子矩阵面积。

示例1:
输入:matrix = [[0,0,1],[1,1,1],[1,0,1]]
输出:4
解释:你可以按照上图方式重新排列矩阵的每一列。
最大的全 1 子矩阵是上图中加粗的部分,面积为 4 。
示例 2:
输入:matrix = [[1,0,1,0,1]]
输出:3
解释:你可以按照上图方式重新排列矩阵的每一列。
最大的全 1 子矩阵是上图中加粗的部分,面积为 3 。
示例 3:
输入:matrix = [[1,1,0],[1,0,1]]
输出:2
解释:由于你只能整列整列重新排布,所以没有比面积为 2 更大的全 1 子矩形。
示例 4:
输入:matrix = [[0,0],[0,0]]
输出:0
解释:由于矩阵中没有 1 ,没有任何全 1 的子矩阵,所以面积为 0 。
提示:
m == matrix.length
n == matrix[i].length
1 <= m * n <= 105
matrix[i][j] 要么是 0 ,要么是 1 。
这个题比上一个还简单就是维护一个h[i][j],他说可以交换任意列的次序,那么你在遍历每一列的时候拍个序就行;
class Solution {
public:int largestSubmatrix(vector<vector<int>>& w) {int n=w.size(),m=w[0].size();for(int i=1;i<n;i++){for(int j=0;j<m;j++){if(w[i][j]){w[i][j]+=w[i-1][j];}}}int ans=0;vector<int>q(m);for(int i=0;i<n;i++){for(int j=0;j<m;j++){q[j]=w[i][j];}sort(q.begin(),q.end(),greater<int>());for(int j=0;j<m;j++){ans=max(ans,q[j]*(j+1));}}return ans;}
};
单调栈这一算法虽迟但到,完结撒花!!!
相关文章:
来一场栈的大模拟(主要是单调栈)
一.栈模拟 二.单调栈求最大矩形面积 通常,直方图用于表示离散分布,例如,文本中字符的频率。 现在,请你计算在公共基线处对齐的直方图中最大矩形的面积。 图例右图显示了所描绘直方图的最大对齐矩形。 输入格式 输入包含几个测…...
13 - matlab m_map地学绘图工具基础函数 - 介绍创建管理颜色映射的函数m_colmap和轮廓图绘制颜色条的函数m_contfbar
13 - matlab m_map地学绘图工具基础函数 - 介绍创建管理颜色映射的函数m_colmap和轮廓图绘制颜色条的函数m_contfbar 0. 引言1. 关于m_colmap2. 关于m_contfbar3. 结语 0. 引言 本篇介绍下m_map中用于创建和管理颜色映射函数(m_colmap)和 为轮廓图绘制颜…...
PTA - 编写函数计算圆面积
题目描述: 1.要求编写函数getCircleArea(r)计算给定半径r的圆面积,函数返回圆的面积。 2.要求编写函数get_rList(n) 输入n个值放入列表并将列表返回 函数接口定义: getCircleArea(r); get_rList(n); 传入的参数r表示圆的半径,…...
Golang | Leetcode Golang题解之第218题天际线问题
题目: 题解: type pair struct{ right, height int } type hp []pairfunc (h hp) Len() int { return len(h) } func (h hp) Less(i, j int) bool { return h[i].height > h[j].height } func (h hp) Swap(i, j int) { h[i], h[j]…...
【Mars3d】osgb倾斜摄影模型加载慢卡顿的优化方案参考
倾斜摄影模型文件一共6个多g,一个村子十几间房, 服务器配置:8c16g 100M 答: 目前可以对 3dtiles 模型有下面 3 方法来入手: 数据处理层面,比如数据处理工具的选择、和选择的工具本身的一些优化参数的设…...
认识同源策略
同源策略是一种浏览器安全机制,用于限制一个源的文档或脚本如何与另一个源的资源进行交互。源由协议(如HTTP或HTTPS)、域名和端口号组成。如果两个URL的协议、域名和端口都相同,则它们具有相同的源。 同源策略主要影响以下几个方…...
ADOQuery 查询MSSQL存储过程一个莫名其妙的错误;
在 SSMS 中执行完成正常的的存储过程。 也能正常的返回想要的数据,,然后通过 ADO 查询时,总是提法 某 字段不存在的问题; 此问题困扰了一天。 例如(当然,实际数据结构比下面举例的复杂)&…...
变阻器的分类
变阻器作为用于调节电路中电阻值的电子元件,在电子电路中具有广泛的应用。根据不同的工作原理和结构形式,变阻器可以分为多种类型。以下是对变阻器分类的详细阐述: 一、按工作原理分类 电位器是一种通过滑动端位置调节电阻值的变阻器&#x…...
微服务节流阀:Eureka中服务限流策略的精妙实现
微服务节流阀:Eureka中服务限流策略的精妙实现 引言 在微服务架构中,服务的稳定性和可靠性至关重要。限流策略作为保障服务稳定性的一种手段,通过控制服务的访问速率,可以有效避免服务过载和故障扩散。Eureka作为Netflix开源的服…...
Keras实战之图像分类识别
文章目录 整体流程数据加载与预处理搭建网络模型优化网络模型学习率Drop-out操作权重初始化方法对比正则化加载模型进行测试 实战:利用Keras框架搭建神经网络模型实现基本图像分类识别,使用自己的数据集进行训练测试。 问:为什么选择Keras&am…...
Celery,一个实时处理的 Python 分布式系统
大家好!我是爱摸鱼的小鸿,关注我,收看每期的编程干货。 一个简单的库,也许能够开启我们的智慧之门, 一个普通的方法,也许能在危急时刻挽救我们于水深火热, 一个新颖的思维方式,也许能…...
源码编译安装 LAMP
源码编译安装 LAMP Apache 网站服务基础Apache 简介安装 httpd 服务器 httpd 服务器的基本配置Web 站点的部署过程httpd.conf 配置文件 构建虚拟 Web 主机基于域名的虚拟主机基于IP 地址、基于端口的虚拟主机 MySQL 的编译安装构建 PHP 运行环境安装PHP软件包设置 LAMP 组件环境…...
PostgreSQL的pg_filedump工具
PostgreSQL的pg_filedump工具 基础信息 OS版本:Red Hat Enterprise Linux Server release 7.9 (Maipo) DB版本:16.2 pg软件目录:/home/pg16/soft pg数据目录:/home/pg16/data 端口:5777pg_filedump 是一个工具&#x…...
Java语言+后端+前端Vue,ElementUI 数字化产科管理平台 产科电子病历系统源码
Java语言后端前端Vue,ElementUI 数字化产科管理平台 产科电子病历系统源码 Java开发的数字化产科管理系统,已在多家医院实施,支持直接部署。系统涵盖孕产全程,包括门诊、住院、统计和移动服务,整合高危管理、智能提醒、档案追踪等…...
Linux 服务器环境搭建
一、安装 JDK 官网下载地址:https://www.oracle.com/java/technologies/downloads # 创建目录 mkdir /usr/local/java/# 解压 tar -zxvf jdk-8u333-linux-x64.tar.gz -C /usr/local/java/# 配置环境变量 vim /etc/profileexport export JAVA_HOME/usr/local/java/…...
RabbitMQ 更改服务端口号
需求 windows环境下,将RabbitMQ默认的端口号 5672 改为 11001 实现 本机RabbitMQ版本为3.8.16,找到配置文件位置,路径为:C:\Users\%USERNAME%\AppData\Roaming\RabbitMQ\advanced.config 配置文件默认内容为空 填写修改端口号…...
16:9横屏短视频素材库有哪些?横屏短视频素材网站分享
在这个视觉内容至关重要的时代,16:9横屏视频因其宽广的画面和优越的观赏体验,已经成为无数创作者和营销专家的首选格式。但要创造出吸引人的横屏视频,高质量的视频素材库是不可或缺的。不管你是资深视频制作人还是刚入行的新手,下…...
在Java中,创建一个实现了Callable接口的类可以提供强大的灵活性,特别是当你需要在多线程环境中执行任务并获取返回结果时。
在Java中,创建一个实现了Callable接口的类可以提供强大的灵活性,特别是当你需要在多线程环境中执行任务并获取返回结果时。以下是一个简单的案例,演示了如何创建一个实现了Callable接口的类,并在线程池中执行它。 首先࿰…...
Vuforia AR篇(八)— AR塔防上篇
目录 前言一、设置Vuforia AR环境1. 添加AR Camera2. 设置目标图像 二、创建塔防游戏基础1. 导入素材2. 搭建场景3. 创建敌人4. 创建脚本 前言 在增强现实(AR)技术快速发展的今天,Vuforia作为一个强大的AR开发平台,为开发者提供了…...
Spring AOP源码篇四之 数据库事务
了解了Spring AOP执行过程,再看Spring事务源码其实非常简单。 首先从简单使用开始, 演示Spring事务使用过程 Xml配置: <?xml version"1.0" encoding"UTF-8"?> <beans xmlns"http://www.springframework.org/schema…...
iOS 26 携众系统重磅更新,但“苹果智能”仍与国行无缘
美国西海岸的夏天,再次被苹果点燃。一年一度的全球开发者大会 WWDC25 如期而至,这不仅是开发者的盛宴,更是全球数亿苹果用户翘首以盼的科技春晚。今年,苹果依旧为我们带来了全家桶式的系统更新,包括 iOS 26、iPadOS 26…...
论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(二)
HoST框架核心实现方法详解 - 论文深度解读(第二部分) 《Learning Humanoid Standing-up Control across Diverse Postures》 系列文章: 论文深度解读 + 算法与代码分析(二) 作者机构: 上海AI Lab, 上海交通大学, 香港大学, 浙江大学, 香港中文大学 论文主题: 人形机器人…...
遍历 Map 类型集合的方法汇总
1 方法一 先用方法 keySet() 获取集合中的所有键。再通过 gey(key) 方法用对应键获取值 import java.util.HashMap; import java.util.Set;public class Test {public static void main(String[] args) {HashMap hashMap new HashMap();hashMap.put("语文",99);has…...
Objective-C常用命名规范总结
【OC】常用命名规范总结 文章目录 【OC】常用命名规范总结1.类名(Class Name)2.协议名(Protocol Name)3.方法名(Method Name)4.属性名(Property Name)5.局部变量/实例变量(Local / Instance Variables&…...
连锁超市冷库节能解决方案:如何实现超市降本增效
在连锁超市冷库运营中,高能耗、设备损耗快、人工管理低效等问题长期困扰企业。御控冷库节能解决方案通过智能控制化霜、按需化霜、实时监控、故障诊断、自动预警、远程控制开关六大核心技术,实现年省电费15%-60%,且不改动原有装备、安装快捷、…...
工业自动化时代的精准装配革新:迁移科技3D视觉系统如何重塑机器人定位装配
AI3D视觉的工业赋能者 迁移科技成立于2017年,作为行业领先的3D工业相机及视觉系统供应商,累计完成数亿元融资。其核心技术覆盖硬件设计、算法优化及软件集成,通过稳定、易用、高回报的AI3D视觉系统,为汽车、新能源、金属制造等行…...
面向无人机海岸带生态系统监测的语义分割基准数据集
描述:海岸带生态系统的监测是维护生态平衡和可持续发展的重要任务。语义分割技术在遥感影像中的应用为海岸带生态系统的精准监测提供了有效手段。然而,目前该领域仍面临一个挑战,即缺乏公开的专门面向海岸带生态系统的语义分割基准数据集。受…...
计算机基础知识解析:从应用到架构的全面拆解
目录 前言 1、 计算机的应用领域:无处不在的数字助手 2、 计算机的进化史:从算盘到量子计算 3、计算机的分类:不止 “台式机和笔记本” 4、计算机的组件:硬件与软件的协同 4.1 硬件:五大核心部件 4.2 软件&#…...
HubSpot推出与ChatGPT的深度集成引发兴奋与担忧
上周三,HubSpot宣布已构建与ChatGPT的深度集成,这一消息在HubSpot用户和营销技术观察者中引发了极大的兴奋,但同时也存在一些关于数据安全的担忧。 许多网络声音声称,这对SaaS应用程序和人工智能而言是一场范式转变。 但向任何技…...
Rust 开发环境搭建
环境搭建 1、开发工具RustRover 或者vs code 2、Cygwin64 安装 https://cygwin.com/install.html 在工具终端执行: rustup toolchain install stable-x86_64-pc-windows-gnu rustup default stable-x86_64-pc-windows-gnu 2、Hello World fn main() { println…...
