当前位置: 首页 > news >正文

概论(二)随机变量

1.名词解释

1.1 样本空间

一次具体实验中所有可能出现的结果,构成一个样本空间。

1.2 随机变量

把结果抽象成数值,结果和数值的对应关系就形成了随机变量X。例如把抛一次硬币的结果,正面记为1,反面记为0。有变量相对应的就有自变量,此处我们不用Y而是用P(X)来表示,P(X)就是X取某值时的概率。

1.3 结果轴

随机变量X作为结果是均匀分布在x轴上的,有的是x轴上某一段,甚至只是x轴上的两个点,例如抛硬币只有两种结果,所以对应在x轴上只有两个点x=1或x=0。有的结果可以遍布整个x轴。

误区:在写这段的时候莫名地把正态分布认为是标准正太分布,想到人的身高是符合正太分布的,但又考虑到人的身高不可能有负数,所以大脑就迷糊了。

1.4 概率密度函数PMF

结果是在x轴上均匀分布的,但是每次实验取得结果的可能性却不一定相同,拿离散变量中连续抛两次硬币的结果统计,显然

第一次正第一次反
第二次正1/41/4
第二次反1/41/4

所以一正一反的概率为1/2,X取不同值P(X)随之相应变化,这就构成了概率函数,为什么叫概率密度函数呢?我门可以想象一条由无数个密度不同的铁点焊接成的铁丝,我们任选铁丝其中一点这就类似于随机变量X的取值,该点的密度就类似于概率P(X)

2.常见分布

2.1 常见离散分布

离散分布的概率计算是有限种结果的概率累加
P ( X ∣ X ≤ x n ) = ∑ i = 1 n P ( x i ) P(X|X\le x_n)=\sum_{i=1}^{n}P(x_i) P(XXxn)=i=1nP(xi)

2.1.1 二项分布

2.1.2 几何分布

2.1.3 泊松分布

泊松分布是n很大,p很小的二项分布的近似,其中 λ = n p \lambda=np λ=np

2.2 常见连续分布

连续分布无法通过直接累加进行计算,因为其包含无数种可能,所以我们利用积分的形式进行计算。

2.2.1 均匀分布

2.2.2 指数分布

2.2.3正态分布(高斯分布)

  • 一元高斯分布
  • 多元高斯分布
    X X X有多个维度 x 1 , x 2 , . . . x p x_1,x_2,...x_p x1,x2,...xp X X X可以有n个,所以构成了n*p的矩阵
    X = [ x 11 x 12 x 13 . . . x 1 p x 21 x 22 x 23 . . . x 2 p . . . . . . . . . . . . x n 1 x n 2 x n 3 . . . x n p ] X=\begin{bmatrix} x_{11}&x_{12}&x_{13}&...x_{1p}\\ x_{21}&x_{22}&x_{23}&...x_{2p}\\ ...&...&...&...\\ x_{n1}&x_{n2}&x_{n3}&...x_{np} \end{bmatrix} X= x11x21...xn1x12x22...xn2x13x23...xn3...x1p...x2p......xnp

对比一元高斯矩阵期望 μ 4 \mu4 μ4%此时的 μ = [ μ 1 μ 1 2 . . . u n ] \mu=\begin{bmatrix} \mu_1\\\mu_12\\...\\u_n \end{bmatrix} μ= μ1μ12...un ,是一个向量。

对比一元高斯矩阵的方差 σ 2 \sigma^2 σ2,多元高斯分布的是协方差矩阵,同样是一个对称矩阵
∑ = [ σ 11 σ 12 σ 13 . . . σ 1 p σ 21 σ 22 σ 23 . . . σ 2 p . . . . . . . . . . . . σ p 1 σ p 2 σ p 3 . . . σ p p ] \sum = \begin{bmatrix} \sigma_{11}&\sigma_{12}&\sigma_{13}&...\sigma_{1p}\\ \sigma_{21}&\sigma_{22}&\sigma_{23}&...\sigma_{2p}\\ ...&...&...&...\\ \sigma_{p1}&\sigma_{p2}&\sigma_{p3}&...\sigma_{pp} \end{bmatrix} = σ11σ21...σp1σ12σ22...σp2σ13σ23...σp3...σ1p...σ2p......σpp

概率密度函数
p ( x ∣ θ ) = 1 ( 2 π ) p 2 ∣ Σ ∣ 1 2 e x p [ − 1 2 ( x − μ ) T Σ − 1 ( x − μ ) ] p(x|\theta)=\frac{1}{(2 \pi)^{\frac{p}{2}}|\Sigma |^{\frac{1}{2}}}exp[-\frac{1}{2}(x-\mu)^T\Sigma^{-1}(x-\mu)] p(xθ)=(2π)2p∣Σ211exp[21(xμ)TΣ1(xμ)]

3. 二维分布

随机变量X和Y, P ( X = x i , Y = y i ) P(X=x_i,Y=y_i) P(X=xi,Y=yi)表示两件事同时发生概率,又称联合分布概率, P ( X = x i ∣ Y = y i ) P(X=x_i|Y=y_i) P(X=xiY=yi)表示Y=y发生的条件下X=x的发生概率,又称条件概率。 P ( X = x i ) P(X=x_i) P(X=xi)成为边缘分布概率。
条件分布 = 联合分布 边缘分布 条件分布=\frac{联合分布}{边缘分布} 条件分布=边缘分布联合分布

得明白一个事情,就是如果X与Y没有交集那么对于二维分布来说就没有太多讨论的意义,因为两者的条件分布和联合分布概率都为0,边缘分布就是内部 P ( X = x i ) 或 ( Y = y i ) P(X=x_i)或(Y=y_i) P(X=xi)(Y=yi)
请添加图片描述

Q1:如果X和Y有交集,那 P ( X = x 5 , Y = y 5 ) P(X=x_5,Y=y_5) P(X=x5,Y=y5)等于 P ( X = x 5 ∣ Y = y 5 ) P(X=x_5|Y=y_5) P(X=x5Y=y5)吗?
P ( X = x 5 , Y = y 5 ) P(X=x_5,Y=y_5) P(X=x5,Y=y5)的样本空间大小是55=25个,而 P ( X = x 5 ∣ Y = y 5 ) P(X=x_5|Y=y_5) P(X=x5Y=y5)的样本空间大小是51=5个

在这里插入图片描述

3.2 独立与相关

独立不代表两者不相容,两者不相容也不能证明两者独立
独立一定不相关,不独立一定相关,相关不一定不独立

X与Y独立,分别从离散和连续两个方面请证明:
E ( X + Y ) = E X + E Y E(X+Y)=EX+EY E(X+Y)=EX+EY
E ( X Y ) = E ( X ) E ( Y ) E(XY)=E(X)E(Y) E(XY)=E(X)E(Y)
V ( X + Y ) = V ( X ) + V ( Y ) V(X+Y)=V(X)+V(Y) V(X+Y)=V(X)+V(Y)

3.3 协方差

方差:
V [ X ] = E [ ( X − E [ X ] ) 2 ] = E [ X 2 − 2 X E [ X ] + ( E [ X ] ) 2 ] = E [ X 2 ] − 2 ( E [ X ] ) 2 + ( E [ X ] ) 2 = E [ X 2 ] − ( E [ X ] ) 2 V[X]=E[(X-E[X])^2]=E[X^2-2XE[X]+(E[X])^2]=E[X^2]-2(E[X])^2+(E[X])^2=E[X^2]-(E[X])^2 V[X]=E[(XE[X])2]=E[X22XE[X]+(E[X])2]=E[X2]2(E[X])2+(E[X])2=E[X2](E[X])2
协方差:
c o v ( X , Y ) = E [ ( X − E ( X ) ) ( Y − E ( Y ) ) ] cov(X,Y)=E[(X-E(X))(Y-E(Y))] cov(X,Y)=E[(XE(X))(YE(Y))]

体会两者的不同

3.4 协方差矩阵

如果随机变量的个数提高到n个,则需要单独计算每个变量之间的协方差,同样也需要计算自己与自己的协方差,根据公式可知自己与自己的协方差就是方差,如此我们就构建了一个对称矩阵,称为协方差矩阵。

相关文章:

概论(二)随机变量

1.名词解释 1.1 样本空间 一次具体实验中所有可能出现的结果,构成一个样本空间。 1.2 随机变量 把结果抽象成数值,结果和数值的对应关系就形成了随机变量X。例如把抛一次硬币的结果,正面记为1,反面记为0。有变量相对应的就有自…...

Apache AGE 安装部署

AGE概述 概述 我们可以通过源码安装、拉取docker镜像运行、直接使用公有云三种方式中的任意一种来使用Apache AGE 获取 AGE 发布版本 可以在 https://github.com/apache/age/releases 找到发布版本和发布说明。 源代码 源代码可以在 https://github.com/apache/age 找到…...

Python29 Tensorflow的基本知识和使用

1. TensorFlow TensorFlow 是一个开源的机器学习框架,由 Google Brain 团队开发。它用于数据流图的计算,尤其擅长深度学习任务。在 TensorFlow 中,数据流图(Data Flow Graph)是其核心概念之一,它定义了计算…...

Linux操作系统上用到的磁盘分区管理工具

parted磁盘分区工具 磁盘格式&#xff1a;MBR, GPT, 这两种名称分别是硬盘里面分区表两种格式的称呼&#xff0c; 第一种MBR格式的分区表最大支持2TB的容量&#xff0c; 磁盘的三种分区主分区&#xff0c;扩展分区&#xff0c;逻辑分区&#xff0c;主分区扩展分区<4 第…...

Python数据结构的库之Fuk使用详解

概要 fuk 是一个用于处理 Python 数据结构的库,全称为 "Fast and Uncomplicated Kit"。它提供了一系列高效、简洁的数据结构实现,以及对 Python 内置数据结构的扩展。通过使用 fuk,开发者可以更加方便地处理列表、集合、字典等数据类型,提高代码的执行效率和可读…...

【STM32学习】cubemx配置,串口的使用,串口发送接收函数使用,以及串口重定义、使用printf发送

1、串口的基本配置 选择USART1&#xff0c;选择异步通信&#xff0c;设置波特率 选择后&#xff0c;会在右边点亮串口 串口引脚是用来与其他设备通信的&#xff0c;如在程序中打印发送信息&#xff0c;电脑上打开串口助手&#xff0c;就会收到信息。 串口的发送接收&#xff0…...

复现MiDAS文章:文章数据和代码

介绍 MiDAS 4: A global catalogue of full-length 16S rRNA gene sequences and taxonomy for studies of bacterial communities in wastewater treatment plants 提供了全套的代码和数据&#xff0c;方便大家复现&#xff1a; github: https://github.com/ msdueholm/MiD…...

【Python专栏】Python的历史及背景介绍

博客主页&#xff1a;Duck Bro 博客主页系列专栏&#xff1a;Python专栏关注博主&#xff0c;后期持续更新系列文章如果有错误感谢请大家批评指出&#xff0c;及时修改感谢大家点赞&#x1f44d;收藏⭐评论✍ Python的背景介绍 关键词&#xff1a;Python、优缺点、领域 目录 …...

web端已有项目集成含UI腾讯IM

通过 npm 方式下载 TUIKit 组件&#xff0c;将 TUIKit 组件复制到自己工程的 src 目录下&#xff1a; npm i tencentcloud/chat-uikit-vue mkdir -p ./src/TUIKit && rsync -av --exclude{node_modules,package.json,excluded-list.txt} ./node_modules/tencentcloud/…...

IF不降反增!审稿速度,比我家网速还快!3本接受率高的医学期刊,赶紧码住!

&#x1f50d; 为什么选择这3本期刊&#xff1f; 今天老毕给大家分享3本医学 SCI&#xff0c;分别为Tumori Journal、Adipocyte以及Annals of Medicine。 这3本医学杂志&#xff0c;不仅审稿速度快&#xff0c;录用率还高&#xff0c;其中不乏接受率为48%的“毕业神刊”。2024年…...

怎样把视频字幕提取出来?分享4个零门槛的字幕提取工具

暑假正是弯道超车的好机会&#xff01;相信不少朋友都会选择宅在家自学网课。 不可否认的是&#xff0c;海量学习资源的确可以让学习变得更加便捷与自由。然而&#xff0c;如何高效地吸收和理解在线课程也就成为了一个关键问题。不敢想倘若此时能够拥有一款高效又实用的视频提…...

PostgreSQL 里怎样解决多租户数据隔离的性能问题?

文章目录 一、多租户数据隔离的性能问题分析&#xff08;一&#xff09;大规模数据存储和查询&#xff08;二&#xff09;并发访问和锁争用&#xff08;三&#xff09;索引维护成本高&#xff08;四&#xff09;资源分配不均 二、解决方案&#xff08;一&#xff09;数据分区&a…...

Oracle执行一条SQL的内部过程

一、SQL语句根据其功能主要可以分为以下几大类&#xff1a; 1. 数据查询语言&#xff08;DQL, Data Query Language&#xff09; 功能&#xff1a;用于从数据库中检索数据&#xff0c;常用于查询表中的记录。基本结构&#xff1a;主要由SELECT子句、FROM子句、WHERE子句等组成…...

SpringMVC的架构有什么优势?——控制器(一)

#SpringMVC的架构有什么优势&#xff1f;——控制器&#xff08;一&#xff09; 前言 关键字&#xff1a; 机器学习 人工智能 AI chatGPT 学习 实现 使用 搭建 深度 python 事件 远程 docker mysql安全 技术 部署 技术 自动化 代码 文章目录 控制器(Controller) 控制器是S…...

LabVIEW干涉仪测向系统

开发了一套基于LabVIEW的软件系统&#xff0c;结合硬件设备&#xff0c;构建一个干涉仪测向实验教学平台。该平台应用于信号处理课程&#xff0c;帮助学生将理论知识与实际应用相结合&#xff0c;深化对信号处理核心概念的理解和应用。 项目背景&#xff1a; 当前信号处理教学…...

JavaScript 模拟光标全选选中一段文字

在JavaScript中&#xff0c;如果你想要通过编程方式选择一段文本&#xff0c;你可以使用window.getSelection()和Range对象。以下是一个简单的例子&#xff0c;展示了如何使用这些对象来选中页面上的特定文本节点&#xff1a; function selectText(node) {if (window.getSelect…...

【算法】代码随想录之数组(更新中)

文章目录 前言 一、二分查找法&#xff08;LeetCode--704&#xff09; 二、移除元素&#xff08;LeetCode--27&#xff09; 前言 跟随代码随想录&#xff0c;学习数组相关的算法题目&#xff0c;记录学习过程中的tips。 一、二分查找法&#xff08;LeetCode--704&#xff0…...

Win-ARM联盟的端侧AI技术分析

Win-ARM联盟&#xff0c;端侧AI大幕将起 微软震撼发布全球首款AI定制Windows PC——Copilot PC&#xff0c;搭载全新NPU与重塑的Windows 11系统&#xff0c;纳德拉盛赞其为史上最快、最强、最智能的Windows PC。该设备算力需求高达40TOPS&#xff0c;支持语音翻译、实时绘画、文…...

MySQL常见的几种索引类型及对应的应用场景

MySQL 提供了多种索引类型&#xff0c;每种索引类型都有其特定的应用场景和优势。以下是 MySQL 中常见的几种索引类型及其具体应用场景&#xff1a; 1. B-Tree 索引 特点&#xff1a; B-Tree&#xff08;Balanced Tree&#xff0c;平衡树&#xff09;是 MySQL 的默认索引类型…...

如何利用java依赖jave-all-deps实现视频格式转换

视频格式转换是常见的需求&#xff0c;通过使用Java依赖库jave-all-deps可以实现视频格式的转换。本文将详细介绍在Java中如何利用jave-all-deps实现视频格式转换。 什么是jave-all-deps库&#xff1f; jave-all-deps是一款基于FFmpeg库的Java音视频编解码库。它提供了一系列AP…...

Linux链表操作全解析

Linux C语言链表深度解析与实战技巧 一、链表基础概念与内核链表优势1.1 为什么使用链表&#xff1f;1.2 Linux 内核链表与用户态链表的区别 二、内核链表结构与宏解析常用宏/函数 三、内核链表的优点四、用户态链表示例五、双向循环链表在内核中的实现优势5.1 插入效率5.2 安全…...

【人工智能】神经网络的优化器optimizer(二):Adagrad自适应学习率优化器

一.自适应梯度算法Adagrad概述 Adagrad&#xff08;Adaptive Gradient Algorithm&#xff09;是一种自适应学习率的优化算法&#xff0c;由Duchi等人在2011年提出。其核心思想是针对不同参数自动调整学习率&#xff0c;适合处理稀疏数据和不同参数梯度差异较大的场景。Adagrad通…...

2.Vue编写一个app

1.src中重要的组成 1.1main.ts // 引入createApp用于创建应用 import { createApp } from "vue"; // 引用App根组件 import App from ./App.vue;createApp(App).mount(#app)1.2 App.vue 其中要写三种标签 <template> <!--html--> </template>…...

【2025年】解决Burpsuite抓不到https包的问题

环境&#xff1a;windows11 burpsuite:2025.5 在抓取https网站时&#xff0c;burpsuite抓取不到https数据包&#xff0c;只显示&#xff1a; 解决该问题只需如下三个步骤&#xff1a; 1、浏览器中访问 http://burp 2、下载 CA certificate 证书 3、在设置--隐私与安全--…...

C++中string流知识详解和示例

一、概览与类体系 C 提供三种基于内存字符串的流&#xff0c;定义在 <sstream> 中&#xff1a; std::istringstream&#xff1a;输入流&#xff0c;从已有字符串中读取并解析。std::ostringstream&#xff1a;输出流&#xff0c;向内部缓冲区写入内容&#xff0c;最终取…...

NLP学习路线图(二十三):长短期记忆网络(LSTM)

在自然语言处理(NLP)领域,我们时刻面临着处理序列数据的核心挑战。无论是理解句子的结构、分析文本的情感,还是实现语言的翻译,都需要模型能够捕捉词语之间依时序产生的复杂依赖关系。传统的神经网络结构在处理这种序列依赖时显得力不从心,而循环神经网络(RNN) 曾被视为…...

06 Deep learning神经网络编程基础 激活函数 --吴恩达

深度学习激活函数详解 一、核心作用 引入非线性:使神经网络可学习复杂模式控制输出范围:如Sigmoid将输出限制在(0,1)梯度传递:影响反向传播的稳定性二、常见类型及数学表达 Sigmoid σ ( x ) = 1 1 +...

【p2p、分布式,区块链笔记 MESH】Bluetooth蓝牙通信 BLE Mesh协议的拓扑结构 定向转发机制

目录 节点的功能承载层&#xff08;GATT/Adv&#xff09;局限性&#xff1a; 拓扑关系定向转发机制定向转发意义 CG 节点的功能 节点的功能由节点支持的特性和功能决定。所有节点都能够发送和接收网格消息。节点还可以选择支持一个或多个附加功能&#xff0c;如 Configuration …...

提升移动端网页调试效率:WebDebugX 与常见工具组合实践

在日常移动端开发中&#xff0c;网页调试始终是一个高频但又极具挑战的环节。尤其在面对 iOS 与 Android 的混合技术栈、各种设备差异化行为时&#xff0c;开发者迫切需要一套高效、可靠且跨平台的调试方案。过去&#xff0c;我们或多或少使用过 Chrome DevTools、Remote Debug…...

抽象类和接口(全)

一、抽象类 1.概念&#xff1a;如果⼀个类中没有包含⾜够的信息来描绘⼀个具体的对象&#xff0c;这样的类就是抽象类。 像是没有实际⼯作的⽅法,我们可以把它设计成⼀个抽象⽅法&#xff0c;包含抽象⽅法的类我们称为抽象类。 2.语法 在Java中&#xff0c;⼀个类如果被 abs…...