这个网站的建设流程/沈阳网站建设
摘要
在图像处理和分析中,前景提取是一项关键技术,尤其是在计算机视觉和模式识别领域。本文介绍了一种结合OpenCV和PIL库的方法,实现在批量处理图像时有效提取前景并保留原始图像的EXIF数据。具体步骤包括从指定文件夹中读取图像,进行前景提取和处理,然后将结果保存到另一个文件夹,同时保持图像的元数据信息。
代码实现步骤
这段代码实现了从指定文件夹中批量读取图像,进行前景提取和处理,并将结果保存到另一个文件夹,同时保留原始图像的EXIF信息。以下是代码的详细解释:
导入必要的库
import cv2
import numpy as np
from PIL import Image
import glob
import os
from pathlib import Path
import tqdm
cv2
: OpenCV库,用于图像处理。numpy
: 数值计算库,用于处理数组操作。PIL
: Python图像库,用于处理图像文件和EXIF数据。glob
: 文件名模式匹配库,用于查找符合特定模式的文件路径名。os
: 操作系统接口,用于文件和目录操作。Path
: pathlib库的一部分,用于处理文件路径。tqdm
: 进度条库,用于显示处理进度。
设置文件夹路径和创建输出文件夹
folder_path = r'C:\Users\cdh96\Desktop\iphone11\*.jpg'
output_folder = r'D:\lab\paper\img_preproccess\extrat_foreground\1\images'if not os.path.isdir(output_folder):os.mkdir(output_folder)
folder_path
: 输入图像文件夹路径。output_folder
: 输出图像文件夹路径。如果输出文件夹不存在,则创建它。
处理图像
for image_path in tqdm.tqdm(glob.glob(folder_path)):path_obj = Path(image_path)image_path = path_obj.as_posix()img_original = cv2.imread(image_path)if img_original is None:breakimg_original = cv2.cvtColor(img_original, cv2.COLOR_RGB2BGR)img_gray = cv2.imread(image_path, 0)
- 使用
glob
库获取所有符合条件的图像路径,并使用tqdm
显示进度条。 - 使用
cv2.imread
读取图像,如果图像为空,退出循环。 - 将图像转换为BGR格式,并读取灰度图像。
前景提取和处理
output_path = os.path.join(output_folder, path_obj.name)retval, img_global = cv2.threshold(img_gray, 30, 255, cv2.THRESH_BINARY)img_global[img_global > 0] = 1kernel = np.ones((3, 3), dtype=np.uint8)img_global = cv2.morphologyEx(img_global, cv2.MORPH_OPEN, kernel, iterations=4)num_labels, labels, stats, centroids = cv2.connectedComponentsWithStats(img_global, connectivity=8)sorted_indices = np.argsort(stats[:, -1])labels[labels != sorted_indices[-2]] = 0labels[labels == sorted_indices[-2]] = 1img_original = img_original * np.repeat(labels[:, :, np.newaxis], 3, axis=-1)img_original = cv2.convertScaleAbs(img_original)image_rgb = cv2.cvtColor(img_original, cv2.COLOR_BGR2RGB)
- 使用全局阈值法提取前景。
- 使用形态学操作去除噪点。
- 使用连通组件分析提取主要前景区域。
- 根据连通组件的面积排序,选取面积第二大的组件作为主要前景。
- 生成前景掩码并应用到原始图像。
保存处理后的图像并保留EXIF数据
cv2.imwrite(output_path, image_rgb)with Image.open(r'D:\lab\paper\img_preproccess\extrat_foreground\1\DSC00421.JPG') as img:exif_data = img.info.get('exif')with Image.open(output_path) as img:img.save(output_path, 'JPEG', exif=exif_data)
- 保存处理后的图像。
- 从示例图像中提取EXIF数据,并应用到处理后的图像中。
这个过程确保了前景的提取和处理,同时保留了原始图像的EXIF元数据,使得图像在保存时保留原始的拍摄信息。
整体代码
import cv2
import numpy as np
from PIL import Image
import glob
import os
from pathlib import Path
import tqdmfolder_path = r'C:\Users\cdh96\Desktop\iphone11\*.jpg'
output_folder = r'D:\lab\paper\img_preproccess\extrat_foreground\1\images'if not os.path.isdir(output_folder):os.mkdir(output_folder)for image_path in tqdm.tqdm(glob.glob(folder_path)):path_obj = Path(image_path)image_path = path_obj.as_posix()img_original = cv2.imread(image_path)if img_original is None:breakimg_original = cv2.cvtColor(img_original, cv2.COLOR_RGB2BGR)img_gray = cv2.imread(image_path, 0)output_path = os.path.join(output_folder,path_obj.name)# 分割retval, img_global = cv2.threshold(img_gray, 30, 255, cv2.THRESH_BINARY)img_global[img_global > 0] = 1# 处理毛刺kernel = np.ones((3, 3), dtype=np.uint8)img_global = cv2.morphologyEx(img_global, cv2.MORPH_OPEN, kernel, iterations=4)# 根据面积选取主体num_labels, labels, stats, centroids = cv2.connectedComponentsWithStats(img_global, connectivity=8)sorted_indices = np.argsort(stats[:, -1])# 使用masklabels[labels != sorted_indices[-2]] = 0labels[labels == sorted_indices[-2]] = 1img_original = img_original * np.repeat(labels[:, :, np.newaxis], 3, axis=-1)img_original = cv2.convertScaleAbs(img_original)image_rgb = cv2.cvtColor(img_original, cv2.COLOR_BGR2RGB)cv2.imwrite(output_path, image_rgb)# # 存储原始的图像信息with Image.open(r'D:\lab\paper\img_preproccess\extrat_foreground\1\DSC00421.JPG') as img:exif_data = img.info.get('exif')with Image.open(output_path) as img:img.save(output_path, 'JPEG', exif=exif_data)
相关文章:

OpenCV和PIL进行前景提取
摘要 在图像处理和分析中,前景提取是一项关键技术,尤其是在计算机视觉和模式识别领域。本文介绍了一种结合OpenCV和PIL库的方法,实现在批量处理图像时有效提取前景并保留原始图像的EXIF数据。具体步骤包括从指定文件夹中读取图像,…...

Linux虚拟化大师:使用 KVM 和 QEMU 进行高级虚拟化管理
Linux 虚拟化大师:使用 KVM 和 QEMU 进行高级虚拟化管理 虚拟化技术是现代数据中心的核心技术之一,它可以将一台物理服务器分割成多个虚拟机,从而提高资源利用率,降低成本,并增强系统的灵活性和可扩展性。KVM…...

CentOS-6的iso下载地址镜像yum源
CentOS6下载地址镜像yum源 从 CentOS官网 Vault Mirror 过期镜像库下载 下载iso光盘镜像,使用其提供的yum源 vault:保险库,墓穴 , Vault Mirror 是官方对过期镜像库的取名 CentOS官网 Vault Mirror 过期镜像库 可下载CentOS2,3,4,5,6,7,8 CentOS-Vault.repo对应的是发行该镜…...

【python】PyQt5可视化开发,鼠标键盘实现联动界面交互逻辑与应用实战
✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,…...

Raw Socket(一)实现TCP三次握手
实验环境: Windows物理机:192.168.1.4 WSL Ubuntu 20.04.6 LTS:172.19.32.196 Windows下的一个http服务器:HFS,大概长这个样子: 客户端就是Ubuntu,服务端就是这个…...

考研数学开始的晚?别慌,超全复习规划拿去抄
实话实说,从七月中旬考研数一复习完真的有点悬,需要超级高效快速... 数二的时间也有点紧张...🥺 中间基本没有试错的时间,让你换老师换习题尝试,必须从头到尾规划好 而且相信你也不止自己,有很多考研党都是…...

创建React 项目的几种方式
①.react自带脚手架 使用步骤: 1、下载 npm i create-react-app -g 2、创建项目命令: create-react-app 项目名称 ②.Vite构建工具创建react步骤:(推荐) 方法一: 1、yarn create vite 2、后续根据提示步…...

探索Kotlin:从K1到K2
人不走空 🌈个人主页:人不走空 💖系列专栏:算法专题 ⏰诗词歌赋:斯是陋室,惟吾德馨 嘿,小伙伴们!今天我们来聊聊Kotlin,这个在安卓开发圈里越来越火的编程语言。…...

Python爬虫速成之路(1):获取网页源代码
hello hello~ ,这里是绝命Coding——老白~💖💖 ,欢迎大家点赞🥳🥳关注💥💥收藏🌹🌹🌹 💥个人主页:绝命Coding-CSDN博客 &a…...

OpenGL笔记七之顶点数据绘制命令和绘制模式
OpenGL笔记七之顶点数据绘制命令和绘制模式 —— 2024-07-07 杭州 下午 总结自bilibili赵新政老师的教程 code review! 文章目录 OpenGL笔记七之顶点数据绘制命令和绘制模式1.OpenGL版本号更改和编译更改2.GL_TRIANGLES模式绘制一个三角形、支持NFC坐标随窗口缩放2.1.三个点…...

力扣题解( 最长湍流子数组)
978. 最长湍流子数组 已解答 给定一个整数数组 arr ,返回 arr 的 最大湍流子数组的长度 。 如果比较符号在子数组中的每个相邻元素对之间翻转,则该子数组是 湍流子数组 。 更正式地来说,当 arr 的子数组 A[i], A[i1], ..., A[j] 满足仅满…...

pytorch-RNN存在的问题
这里写目录标题 1. RNN存在哪些问题呢?1.1 梯度弥散和梯度爆炸1.2 RNN为什么会出现梯度弥散和梯度爆炸呢? 2. 解决梯度爆炸方法3. Gradient Clipping的实现4. 解决梯度弥散的方法 1. RNN存在哪些问题呢? 1.1 梯度弥散和梯度爆炸 梯度弥散是…...

Leetcode 17:电话号码的字母组合
给定一个仅包含数字 2-9 的字符串,返回所有它能表示的字母组合。答案可以按 任意顺序 返回。 public List<String> letterCombinations(String digits) {if (digits null || digits.length() 0) {return result;}int index0; //记录遍历digits的角标//初始…...

jmeter-beanshell学习4-beanshell截取字符串
再写个简单点的东西,截取字符串,参数化文件统一用csv,然后还要用excel打开,如果是数字很容易格式就乱了。有同事是用双引号把数字引起来,报文里就不用加引号了,但是这样beanshell处理起来,好像容…...

QScrollArea 设置最大的高度值
在 Qt 中,QScrollArea 是一个提供滚动视图的控件,允许用户查看大于当前视口尺寸的内容。如果你想要为 QScrollArea 设置一个最大的高度值,这通常不是直接通过 QScrollArea 的属性来设置的,而是需要调整其内容部件(widg…...

CentOS6禁止锁屏
在电源中设置后还是会锁屏, 原因是有屏幕保护程序 电源管理都 “从不” 一些AI的回答 在CentOS 6系统中,如果你想要禁用锁屏功能,可以编辑/etc/kbd/config文件。这个文件通常包含了键盘相关的设置,包括密码策略和屏幕锁定选项。 首先打开终…...

MapReduce底层原理详解:大案例解析(第32天)
系列文章目录 一、MapReduce概述 二、MapReduce工作机制 三、Map,Shuffle,reduce阶段详解 四、大案例解析 文章目录 系列文章目录前言一、MapReduce概述二、MapReduce工作机制1. 角色与组件2. 作业提交与执行流程1. 作业提交:2. Map阶段&…...

【JVM基础篇】Java垃圾回收器介绍
垃圾回收器(垃圾回收算法实现) 垃圾回收器是垃圾回收算法的具体实现。由于垃圾回收器分为年轻代和老年代,除了G1(既能管控新生代,也可以管控老年代)之外,新生代、老年代的垃圾回收器必须按照ho…...

java通过poi-tl导出word实战详细步骤
文章目录 与其他模版引擎对比1.引入maven依赖包2.新建Word文档exportWprd.docx模版3.编写导出word接口代码4.导出成果 poi-tl是一个基于Apache POI的Word模板引擎,也是一个免费开源的Java类库,你可以非常方便的加入到你的项目中,并且拥有着让…...

将自签证书添加到Java的可信任证书列表中
文章目录 前言将自签证书添加到Java的可信任证书列表中添加到Java的可信任证书列表中 前言 如果您觉得有用的话,记得给博主点个赞,评论,收藏一键三连啊,写作不易啊^ _ ^。 而且听说点赞的人每天的运气都不会太差,实…...

一文清晰了解CSS——简单实例
首先一个小技巧: 一定要学会的vsCode格式化整理代码的快捷键,再也不用手动调格式了-腾讯云开发者社区-腾讯云 (tencent.com) CSS选择器用于选择要应用样式的HTML元素。常见的选择器包括: 类选择器:以.开头,用于选择具…...

工程师 - 什么是XML文件
XML(eXtensible Markup Language,扩展标记语言)文件是一种使用自定义标签来定义对象及其内部数据的纯文本文件。XML设计的目的是既易于人类阅读又易于机器解析,因此它在不同系统和应用之间传输和存储数据时非常有用。 XML的主要特…...

[AI 大模型] 阿里巴巴 通义千问
文章目录 [AI 大模型] 阿里巴巴 通义千问简介模型架构发展新技术和优势示例 [AI 大模型] 阿里巴巴 通义千问 简介 阿里巴巴的 通义千问 是由阿里云开发的一款大型语言模型,旨在为用户提供高效、智能的自然语言处理服务。 通义千问能够处理多种语言输入,…...

关于无法定位程序输入点 SetDefaultDllDirectories于动态链接库KERNEL32.dll 上 解决方法
文章目录 1. ERNEL32.dll 下载2. 解决方法 👍 个人网站:【 洛秋小站】 1. ERNEL32.dll 下载 Windows 7 在安装postman时报错缺少动态链接库,提示缺少.NET Framework,这是因为本地缺少相应的dll文件导致的,这时就需要下载ERNEL32.dll文件,在解…...

轻松创建对象——简单工厂模式(Java实现)
1. 引言 大家好,又见面了!在上一篇文章中,我们通过Python示例介绍了简单工厂模式,今天,我们继续深入这个话题,用Java来实现简单工厂模式。 2. 什么是简单工厂模式 简单工厂模式(Simple Facto…...

Docker Dockerfile:构建与优化
Docker Dockerfile:构建与优化 简介 Docker 是一种广泛使用的容器化技术,它允许开发人员将应用程序及其依赖环境打包到一个可移植的容器中。Dockerfile 是 Docker 中用于自动化容器镜像构建的脚本文件。本文将详细介绍 Dockerfile 的基本结构、指令使用…...

开源项目有哪些机遇与挑战?
随着全球经济和科技环境的快速变化,开源软件项目的蓬勃发展成为了开发者社区的热门话题。越来越多的开发者和企业选择参与开源项目,以推动技术创新和实现协作共赢。本文将从开源项目的发展趋势、参与开源的经验分享以及开源项目的挑战三个方面进行探讨。…...

利用【Python】【线性规划】优化工厂生产:实现智能资源配置与利润最大化的现代解决方案
目录 1. 问题背景和描述 1.1 问题背景 1.2 问题描述 2. 数学模型的建立 2.1决策变量 2.2 目标函数 2.3 约束条件 2.4 数学模型总结 3. 使用Python解决线性规划问题 3.1 导入必要的库 3.2 定义目标函数系数 3.3 定义不等式约束矩阵和向量 3.4 定义变量的边界 非负…...

【spark】Exception in thread “main“ ExitCodeException exitCode=-1073741701
在window上运行spark程序写到本地文件的时候报错。 val rdd sc.sparkContext.parallelize(list)val arr rdd.collect()arr.foreach(println)rdd.saveAsTextFile("test1")sc.close()错误信息: zhangsan lisi wangwu Exception in thread "main" ExitCode…...

数学建模美赛经验小结
图片资料来自网络所听讲座,感谢分享!...