GCN、GIN
# 使用TuDataset 中的PROTEINS数据集。
# 里边有1113个蛋白质图,区分是否为酶,即二分类问题。# 导包
from torch_geometric.datasets import TUDataset
from torch_geometric.data import DataLoader
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn import Linear,Sequential,BatchNorm1d,ReLU,Dropout
from torch_geometric.nn import GCNConv,GINConv
from torch_geometric.nn import global_mean_pool,global_add_pool# 导入数据集
dataset = TUDataset(root='',name='PROTEINS').shuffle()
# 观测图数据
print(f'Dataset:{dataset}')
print(f'Number of graphs:{len(dataset)}')
print(f'Number of nodes:{dataset[1].x.shape[0]}') # 这是针对于第一个图来说,每个图的节点数会不同
print(f'Number of features:{dataset.num_features}')
print(f'Number of classes:{dataset.num_classes}')# 一个大的数据集进行拆分,按照 8 :1 :1的比列分为训练集,验证集和测试集
train_dataset = dataset[:int(len(dataset)*0.8)]
val_dataset = dataset[int(len(dataset)*0.8):int(len(dataset)*0.9)]
test_dataset = dataset[int(len(dataset)*0.9):]
# 打印验证:
print('----------------------------------------------')
print(f'training set ={len(train_dataset)} graphs') # 890
print(f'validation set ={len(val_dataset)} graphs')# 111
print(f'test set ={len(test_dataset)} graphs')# 112
# 进行批处理,每个批次最多64个图
train_loader = DataLoader(train_dataset,batch_size=64,shuffle=True)
val_loader = DataLoader(val_dataset,batch_size=64,shuffle=True)
test_loader = DataLoader(test_dataset,batch_size=64,shuffle=True)# 打印验证一下:
print('------------------------------------------------')
print('\nTrain Loader')
for i,batch in enumerate(train_loader):print(f'-Batch{i}:{batch}')
print('\nVadidation Loader')
for i,batch in enumerate(val_loader):print(f'-Batch{i}:{batch}')
print('\nTest Loader')
for i,batch in enumerate(test_loader):print(f'-Batch{i}:{batch}')# 来咯,构建GCN模型,进行分类
class GCN(nn.Module):def __init__(self,dim_h):super().__init__()self.conv1 = GCNConv(dataset.num_features,dim_h)self.conv2 = GCNConv(dim_h,dim_h)self.conv3 = GCNConv(dim_h,dim_h)self.lin = Linear(dim_h,dataset.num_classes)def forward(self,x,edge_index,batch):h = self.conv1(x,edge_index)h = h.relu()h = self.conv2(h,edge_index)h = h.relu()h = self.conv3(h,edge_index)# global_mean_pool 适合用于一些数据分布不平衡的数据hG = global_mean_pool(h,batch)# 分类h = F.dropout(hG,p=0.5,training=self.training)h = self.lin(h)return F.log_softmax(h,dim=1)# 定义GIN模型
class GIN(nn.Module):def __init__(self,dim_h):super().__init__()self.conv1 = GINConv(Sequential(Linear(dataset.num_features,dim_h),BatchNorm1d(dim_h),ReLU(),Linear(dim_h,dim_h),ReLU()))self.conv2 = GINConv(Sequential(Linear(dim_h, dim_h),BatchNorm1d(dim_h),ReLU(),Linear(dim_h, dim_h),ReLU()))self.conv3 = GINConv(Sequential(Linear(dim_h, dim_h),BatchNorm1d(dim_h),ReLU(),Linear(dim_h, dim_h),ReLU()))# 进行分类# 看论文中的公式可知,计算后是讲三个特征concat在一起self.lin1 = Linear(dim_h*3,dim_h*3)self.lin2 = Linear(dim_h*3,dataset.num_classes)def forward(self,x,edge_index,batch):h1 = self.conv1(x,edge_index)h2 = self.conv2(h1,edge_index)h3 = self.conv3(h2,edge_index)# 求和全局池化相比与其他两种池化技术(Mean global Pooling 和Max global Pooling)更具有表达能力,# 要考虑所有的结构信息,就必须考虑GNN每一层产生的嵌入信息# 将GNN的k个层中每层产生的节点嵌入求和后串联起来h1 = global_add_pool(h1,batch)h2 = global_add_pool(h2,batch)h3 = global_add_pool(h3,batch)h = torch.cat((h1,h2,h3),dim=1)# 分类h = self.lin1(h)h = h.relu()h = F.dropout(h,p=0.5,training=self.training)h = self.lin2(h)return F.log_softmax(h,dim=1)# 开始训练咯
def train(model,loader):# 设置为训练模式model.train()# 损失函数criterion = nn.CrossEntropyLoss()# 优化函数optimizer = torch.optim.Adam(model.parameters(),lr=0.01)epochs = 100for epoch in range(epochs+1):total_loss = 0acc = 0val_loss = 0val_acc = 0for data in loader:# 梯度清零optimizer.zero_grad()# 训练out = model(data.x,data.edge_index,data.batch)# 计算该批次的损失值loss = criterion(out,data.y)# 总损失total_loss += loss / len(loader)# 计算该批次的准确率acc = accuracy(out.argmax(dim=1),data.y) / len(loader)# 反向传播loss.backward()# 参数更细optimizer.step()# 验证val_loss,val_acc = test(model,val_loader)# Print metrics every 20 epochsif (epoch % 20 == 0):print(f'Epoch {epoch:>3} | Train Loss: {total_loss:.2f} | Train Acc: {acc * 100:>5.2f}% | Val Loss: {val_loss:.2f} | Val Acc: {val_acc * 100:.2f}%')return modeldef accuracy(pred_y,y):return ((pred_y == y).sum() / len(y)).item()def test(model,loader):criterion = torch.nn.CrossEntropyLoss()model.eval()loss = 0acc = 0for data in loader:out = model(data.x,data.edge_index,data.batch)loss += criterion(out,data.y) / len(loader)acc += accuracy(out.argmax(dim=1),data.y) / len(loader)return loss,acc# 开始训练
print('GCN Training')
gcn = GCN(dim_h=32)
gcn = train(gcn,train_loader)
print('GIN Training')
gin = GIN(dim_h=32)
gin = train(gin,train_loader)test_loss, test_acc = test(gcn, test_loader)
print(f'GCN test Loss: {test_loss:.2f} | GCN test Acc: {test_acc*100:.2f}%')test_loss, test_acc = test(gin, test_loader)
print(f'Gin test Loss: {test_loss:.2f} | Gin test Acc: {test_acc*100:.2f}%')
GCN 思想::
通过卷积操作来聚合每个节点以及其邻居的特征。
计算公式如下:
H l + 1 = σ ( D ~ − 1 / 2 A ~ D ~ − 1 / 2 H l W l ) H^{l+1}=\sigma(\tilde{D}^{-1/2}\tilde{A}\tilde{D}^{-1/2}H^{l}W^{l}) Hl+1=σ(D~−1/2A~D~−1/2HlWl)
GIN 思想:
目的:增强图神经网络的区分能力,能够更好地区分不同的图,引入了更加强大的聚合函数。
计算公式如下:
h v k = M L P k ( ( 1 + ε ) ⋅ h v k − 1 + ∑ u ∈ N ( v ) h u k − 1 ) h_{v}^{k}=MLP^{k}((1+\varepsilon)\cdot h_{v}^{k-1} + \sum_{u\in\mathcal{N}_(v)}h_{u}^{k-1} ) hvk=MLPk((1+ε)⋅hvk−1+∑u∈N(v)huk−1)
ε \varepsilon ε 是一个可学习的或固定的超参数,用于调节自环的贡献。
相关文章:
![](https://www.ngui.cc/images/no-images.jpg)
GCN、GIN
# 使用TuDataset 中的PROTEINS数据集。 # 里边有1113个蛋白质图,区分是否为酶,即二分类问题。# 导包 from torch_geometric.datasets import TUDataset from torch_geometric.data import DataLoader import torch import torch.nn as nn import torch.…...
![](https://www.ngui.cc/images/no-images.jpg)
Web控件进阶交互
Web控件进阶交互 测试时常需要模拟键盘或鼠标操作,可以用Python的ActionChains来模拟。ActionChains是Selenium提供的一个子类,用于生成和执行复杂的用户交互操作,允许将一系列操作链接在一起,然后一次性执行。 from selenium im…...
![](https://img-blog.csdnimg.cn/img_convert/98cc41498bd6285e0e07bbbcae53d1aa.png)
基于SpringBoot的校园疫情防控系统
你好,我是专注于计算机科学与技术的研究者。如果你对我的工作感兴趣或有任何问题,欢迎随时联系我。 开发语言:Java 数据库:MySQL 技术:SpringBoot框架,B/S架构 工具:Eclipse,Mav…...
![](https://i-blog.csdnimg.cn/direct/726c6358bd864c3180be3bfb5890621f.png)
elasticsearch 查询超10000的解决方案
前言 默认情况下,Elasticsearch集群中每个分片的搜索结果数量限制为10000。这是为了避免潜在的性能问题。 但是我们 在实际工作过程中时常会遇到 需要深度分页,以及查询批量数据更新的情况 问题:当请求form size >10000 时,…...
![](https://i-blog.csdnimg.cn/direct/b1cd87a7e82f4de2be91e4df2216cd52.png)
SpringCloud集成kafka集群
目录 1.引入kafka依赖 2.在yml文件配置配置kafka连接 3.注入KafkaTemplate模版 4.创建kafka消息监听和消费端 5.搭建kafka集群 5.1 下载 kafka Apache KafkaApache Kafka: A Distributed Streaming Platform.https://kafka.apache.org/downloads.html 5.2 在config目录下做…...
![](https://i-blog.csdnimg.cn/direct/c3aeb48cb60a4466aec5c1ea564be8ff.png)
Macos 远程登录 Ubuntu22.04 桌面
这里使用的桌面程序为 xfce, 而 gnome 桌面则测试失败。 1,安装 在ubuntu上,安装 vnc server与桌面程序xfce sudo apt install xfce4 xfce4-goodies tightvncserver 2,第一次启动和配置 $ tightvncserver :1 设置密码。 然后修改配置:…...
![](https://www.ngui.cc/images/no-images.jpg)
第十届MathorCup高校数学建模挑战赛-A题:无车承运人平台线路定价问题
目录 摘 要 1 问题重述 1.1 研究背景 1.2 研究问题 2 符号说明与模型假设 2.1 符号说明 2.2 模型假设 3 问题一:模型建立与求解 3.1 问题分析与思路 3.2 模型建立 3.2.1 多因素回归模型 3.3 模型求解 3.3.1 数据预处理 3.3.2 重要度计算 4 问题二:模型建立与求…...
![](https://i-blog.csdnimg.cn/direct/e2a5dff72bcf4242b473e5bbd0ab7134.png)
在分布式环境中,怎样保证 PostgreSQL 数据的一致性和完整性?
文章目录 在分布式环境中保证 PostgreSQL 数据的一致性和完整性一、数据一致性和完整性的重要性二、分布式环境对数据一致性和完整性的挑战(一)网络延迟和故障(二)并发操作(三)数据分区和复制 三、保证 Pos…...
![](https://www.ngui.cc/images/no-images.jpg)
RabbitMq如何保证消息的可靠性和稳定性
RabbitMq如何保证消息的可靠性和稳定性 rabbitMq不会百分之百让我们的消息安全被消费,但是rabbitMq提供了一些机制来保证我们的消息可以被安全的消费。 消息确认 消息者在成功处理消息后可以发送确认(ACK)给rabbitMq,通知消息已…...
![](https://i-blog.csdnimg.cn/direct/3ec548a611b94e72845d5fa08cac7548.png)
druid(德鲁伊)数据线程池连接MySQL数据库
文章目录 1、druid连接MySQL2、编写JDBCUtils 工具类 1、druid连接MySQL 初学JDBC时,连接数据库是先建立连接,用完直接关闭。这就需要不断的创建和销毁连接,会消耗系统的资源。 借鉴线程池的思想,数据连接池就这么被设计出来了。…...
![](https://i-blog.csdnimg.cn/direct/fc122e97eb034bae830e7dd67463cb33.png)
观察者模式的实现
引言:观察者模式——程序中的“通信兵” 在现代战争中,通信是胜利的关键。信息力以网络、数据、算法、算力等为底层支撑,在现代战争中不断推动感知、决策、指控等各环节产生量变与质变。在软件架构中,观察者模式扮演着类似的角色…...
![](https://www.ngui.cc/images/no-images.jpg)
Eureka: Netflix开源的服务发现框架
在微服务架构中,服务发现是一个关键组件,它允许服务实例之间相互发现并进行通信。Eureka是由Netflix开源的服务发现框架,它是Spring Cloud体系中的核心组件之一。Eureka提供了服务注册与发现的功能,支持区域感知和自我保护机制&am…...
![](https://www.ngui.cc/images/no-images.jpg)
go-基准测试
基准测试 Demo // fib_test.go package mainimport "testing"func BenchmarkFib(b *testing.B) {for n : 0; n < b.N; n {fib(30) // run fib(30) b.N times} }func fib(n int) int {if n 0 || n 1 {return n}return fib(n-2) fib(n-1) }benchmark 和普通的单…...
![](https://i-blog.csdnimg.cn/direct/57e2bb8ce3884877a6c6353ca79a48f0.png#pic_center)
线性代数|机器学习-P23梯度下降
文章目录 1. 梯度下降[线搜索方法]1.1 线搜索方法,运用一阶导数信息1.2 经典牛顿方法,运用二阶导数信息 2. hessian矩阵和凸函数2.1 实对称矩阵函数求导2.2. 线性函数求导 3. 无约束条件下的最值问题4. 正则化4.1 定义4.2 性质 5. 回溯线性搜索法 1. 梯度…...
![](https://i-blog.csdnimg.cn/direct/86bbaac78e164685bb59ddf3c281c19a.png)
SQL,python,knime将数据混合的文字数字拆出来,合并计算实战
将下面将数据混合的文字数字拆出来,合并计算 一、SQL解决: ---创建表插入数据 CREATE TABLE original_data (id INT AUTO_INCREMENT PRIMARY KEY,city VARCHAR(255),value DECIMAL(10, 2) );INSERT INTO original_data (city, value) VALUES (上海0.5…...
![](https://www.ngui.cc/images/no-images.jpg)
mac ssh连接工具
在Mac上,有多个SSH连接工具可供选择,这些工具根据其功能和适用场景的不同,可以满足不同用户的需求。以下是一些推荐的SSH客户端软件:12 iTerm2:这是一款功能强大的终端应用程序,提供了丰富的功能和定制选项…...
![](https://img-blog.csdnimg.cn/img_convert/6f634429a6f2d3a7a211da63c63c574e.jpeg)
阿里通义音频生成大模型 FunAudioLLM 开源
简介 近年来,人工智能(AI)技术的进步极大地改变了人类与机器的互动方式,特别是在语音处理领域。阿里巴巴通义实验室最近开源了一个名为FunAudioLLM的语音大模型项目,旨在促进人类与大型语言模型(LLMs&…...
![](https://img-blog.csdnimg.cn/img_convert/115ccdbedea07dad97b5fe00203d2539.png)
通用详情页的打造
背景介绍 大家都知道,详情页承载了站内的核心流量。它的量级到底有多大呢? 我们来看一下,日均播放次数数亿次,这么大的流量,其重要程度可想而知。 在这样一个页面,每一个功能都是大量业务的汇总点。 作为…...
![](https://img-blog.csdnimg.cn/20200927163243947.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzQzNTkzNjQ2,size_16,color_FFFFFF,t_70#pic_center)
java内部类的本质
定义在类内部,可以实现对外部完全隐藏,可以有更好的封装性,代码实现上也往往更为简洁。 内部类可以方便地访问外部类的私有变量,可以声明为private从而实现对外完全隐藏。 在Java中,根据定义的位置和方式不同…...
![](https://www.ngui.cc/images/no-images.jpg)
vue3 学习笔记08 -- computed 和 watch
vue3 学习笔记08 – computed 和 watch computed computed 是 Vue 3 中用于创建计算属性的重要 API,它能够根据其它响应式数据动态计算出一个新的值,并确保在依赖数据变化时自动更新。 基本用法 squaredCount 是一个计算属性,它依赖于 count…...
![](https://img-blog.csdnimg.cn/img_convert/bdc344a6eaf788051ba00772ec781e3a.webp?x-oss-process=image/format,png)
Python-PLAXIS自动化建模技术与典型岩土工程案例
有限单元法在岩土工程问题中应用非常广泛,很多软件都采用有限单元解法。在使用各大软件进行数值模拟建模的过程中,岩土工程中的各种问题(塑性、渗流、固结、动力、稳定安全、热力TM),一步一步地搭建自己的Plaxis模型&a…...
![](https://www.ngui.cc/images/no-images.jpg)
license系统模型设计使用django models
User (用户)License (许可证)Product (产品)LicenseAssignment (许可证分配) 简单的模型定义: from django.db import models from django.contrib.auth.models import Userclass Product(models.Model):name models.CharField(max_length255)description model…...
![](https://i-blog.csdnimg.cn/direct/d550a4c218434c0ab469a2f232a3bb3f.png)
【通信协议-RTCM】MSM语句(1) - 多信号GNSS观测数据消息格式
注释: RTCM响应消息1020为GLONASS星历信息,暂不介绍,前公司暂未研发RTCM消息类型版本的DR/RTK模块,DR/RTK模块仅NMEA消息类型使用 注释: 公司使用的多信号语句类型为MSM4&MSM7,也应该是运用最广泛的语句…...
![](https://www.ngui.cc/images/no-images.jpg)
vue3-vite-pinia模板
模板说明 下载 git clone https://github.com/AIxiaoHanBao/vue-template.gitmodule参数 node版本 16 UI组件库 element-plus 持久化 pinia 网络请求 axios 路由 vue-router 使用说明 权限管理目录access资源目录assets组件目录components页面目录pages网络请求目录re…...
![](https://i-blog.csdnimg.cn/direct/50e9a83ca61149228cb81798980d98f1.png)
华为HCIP Datacom H12-821 卷38
1.多选题 下面关于 BGP中的公认属性的描述,正确的是 A、公认必遵属性是所有BGP路由器都识别,且必须存在于Updata消息中心 B、BGP必须识别所有公认属性 C、公认属性分为公认必遵和可选过渡两种 D、公认任意属性是所有BGP造由器都可以识别,…...
![](https://i-blog.csdnimg.cn/direct/a4989eebcbeb44dea3dfb400f3da93cf.png)
C语言求10进制转2进制(除2取余法)
1.思路:除2取余法,也就是说用除以2取余来将10进制数转换为二进制 2.两种代码实现,这里用了两,一个递归一个非递归。 递归是一种编程技术,其中一个函数直接或间接地调用自己。递归通常用于解决那些可以被分解为更小的、…...
![](https://www.ngui.cc/images/no-images.jpg)
PHP 调用淘宝详情 API 接口的方法与实践
以下是关于“PHP 调用淘宝详情 API 接口的方法与实践”的一篇文章示例: PHP 调用淘宝详情 API 接口的方法与实践 在当今的电商时代,获取淘宝商品的详情信息对于许多开发者来说是一项重要的任务。使用 PHP 语言来调用淘宝详情 API 接口,可以…...
![](https://www.ngui.cc/images/no-images.jpg)
风景区服务热线系统:智能化时代的旅游新选择
一、引言 1 、风景区服务热线系统的概念 风景区服务热线系统是指为游客提供实时旅游信息咨询、投诉处理、紧急救援等一系列服务的电话和网络平台。它不仅是景区与游客之间的重要沟通桥梁,也是提升游客满意度、优化景区管理的重要手段。 2 、智能化时代对旅游服务…...
![](https://www.ngui.cc/images/no-images.jpg)
Linux修改配置文件后无法使用命令或无法进入桌面
如果你是修改了配置文件,如 sudo vim /etc/profile重启无数次发现无法进入桌面,不要着急重装系统!!,怎么造成的怎么改就行了 以下方案需要root密码,忘记密码详见:Linux忘记root密码怎么办 一…...
![](https://img-blog.csdnimg.cn/img_convert/dead6386ba8ad3cc285dc70f5287e28f.jpeg)
安卓14中Zygote初始化流程及源码分析
文章目录 日志抓取结合日志与源码分析systemServer zygote创建时序图一般应用 zygote 创建时序图向 zygote socket 发送数据时序图 本文首发地址 https://h89.cn/archives/298.html 最新更新地址 https://gitee.com/chenjim/chenjimblog 本文主要结合日志和代码看安卓 14 中 Zy…...
![](https://imgsa.baidu.com/exp/w=500/sign=46c550d5f91f4134e037057e151e95c1/80cb39dbb6fd526630cdf122af18972bd4073626.jpg)
定远建设局网站/关键词优化排名的步骤
浏览器记住密码,怎么查看密码是什么? 听语音| 浏览:7891 | 更新:2015-01-28 14:26 | 标签:浏览器 1234567分步阅读现在浏览器都有一种功能叫记住密码,其实这样很不安全。 你眼睛看的那几个‘******’并没有…...
![](https://img-blog.csdnimg.cn/img_convert/b5117b637aace9321b5e8b13e7f02249.png)
yanderedev.wordpress/地推接单正规平台
这里是水果店早读课,水果店主同行交流圈子,持续分享,帮助新手入门。 水果店的水果去定价是比较复杂的事情,根据不同的情况去定价是常有的事情,有哪些情况需要去区别定价呢。 1、不同时期定价策略不同 同质量水果时&…...
![](https://images2015.cnblogs.com/blog/806469/201603/806469-20160323110312683-217203123.png)
如何做增加网站留存的营销活动/seo策略主要包括
小时候对这个东西很好奇,不知道什么原理.一直觉得很好玩.现在研究了下,总结如下 软件的操作步骤很讲究,稍微不慎,则就需要重新来过 知识点: 1,掌握诺顿ghost分区为gh文件 2,学会清理至一个干净的系统 3,学会部署ghost服务器 一 通过网络批量部署系统 工具:mouse-dos https:…...
![](/images/no-images.jpg)
flash代码做网站教程/上海公关公司
计算机编程术语: 参考网址:https://blog.csdn.net/linear_luo/article/details/52318820 application 应用程式 应用、应用程序 application framework 应用程式框架、应用框架 应用程序框架 architecture 架构、系统架构 体系结构 argument 引数&am…...
![](http://static.blog.csdn.net/xheditor/xheditor_emot/default/smile.gif)
设计网站推荐外网/十大营销策略
参考网址:http://www.360doc.com/content/10/1214/23/3843418_78215161.shtml 我是下载的virtualdub 能用 哈哈 步骤: 1:file open video file 2:video filters add convert format 选择4:2:0 YV12 3:SAVE AVI OK...
![](http://school.cfan.com.cn/system/xp/apply/h003/h86/img2007060410265612.jpg)
安阳区号码/青岛seo整站优化哪家专业
第一步 收集并下载xp的安全补丁 在微软里一个一个下载?不但麻烦,而且还会遗漏,我们用个能批量下载所有补丁的软件Windows Updates Downloader 点击下载。该软件需要Microsoft .NET Framework 2.0支持点击下载。安装Windows Updates Downloade…...