超简易高效的 AI绘图工具—与sd-webui一致界面,6G显存最高提升75%出图速率!(附安装包)
大家好,我是灵魂画师向阳
今天给大家分享一个基于Stable Diffusion WebUI 构建的AI绘图工具—sd-webui-forge,该工具的目标在于简化插件开发,优化资源管理,加速推理。
Forge承诺永远不会对Stable Diffusion WebUI用户界面添加不必要的改变,对于熟悉Stable Diffusion WebUI的同学,能够借助 WebUI经验,快速上手Forge的操作使用。
题外话:Forge作者一直活跃在AIGC绘图社区。先后开源了ControlNet、Foooucs社区优秀的开源软件,最近他又投入到Forge的开发,目标简化AIGC新手入门绘图门槛。
在分辨率为1024px图像质量下,Forge与原始WebUI在SDXL模型推理速率相比,可获得极大的性能加速提升:
-
如果你使用常见的GPU,如8GB显存,推理速度(it/s)可以提高约30~45%,GPU内存峰值(在任务管理器中)降低约700MB到1.3GB,最大扩散分辨率(不会OOM)提高约2倍到3倍,最大扩散批量大小(不会OOM)提高约4倍到6倍。
-
如果你使用性能较低的GPU,如6GB显存,推理速度(it/s)可以提高约60~75%,GPU内存峰值(在任务管理器中)降低约800MB到1.5GB,最大扩散分辨率(不会OOM)提高约3倍,最大扩散批量大小(不会OOM)提高约4倍。
-
如果你使用性能强大的GPU,如4090,带有24GB显存,推理速度(it/s)可以 提高约3~6%,GPU内存峰值(在任务管理器中)降低约1GB到1.4GB,最大扩散分辨率(不会OOM)提高约1.6倍,最大扩散批量大小(不会OOM)提高约2倍。
-
如果你使用ControlNet来进行SDXL推理,最大ControlNet数量(不会OOM)提高约2倍,SDXL+ControlNet的速度提高约30~45%。
除此之外,Forge还增加了一些高效的采样器,例如:DDPM、DDPM Karras、DPM++ 2M Turbo、DPM++ 2M SDE Turbo、LCM Karras、Euler A Turbo等。
sd-webui-forge安装
安装包安装
对于不熟悉git操作同学,则可以扫描免费获取一键安装包。下载完成安装包后,本地解压缩文件,然后使用update.bat
更新,再使用./webui.bat
运行,便可启动forge软件。
注意:一定要运行update.bat
命令,这个很重要的,因为forge代码还在快速迭代开发中,确保及时更新最新代码和环境,否则可能会遇见一些未知的潜在bug版本。与sd-web-ui共享绘图模型的方式与git方案完全一致。
Git安装
如果是熟悉Git有一定开发经验的用户,可以使用git clone下载最新版forge源码本地安装.
环境安装:
git clone https://github.com/lllyasviel/stable-diffusion-webui-forge.git
cd ./stable-diffusion-webui-forge
# Linux
pip3 install torch torchvision torchaudio
# window
# pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu121
pip install -r requirements.txt -U
与sd-web-ui共享模型,节约磁盘浪费。如果是window用户则修改webui-user.bat如下:
@echo offset PYTHON=
set GIT=
set VENV_DIR=
set COMMANDLINE_ARGS=@REM Uncomment following code to reference an existing A1111 checkout.
set A1111_HOME=[stable-diffusion-webui目录]set VENV_DIR=%A1111_HOME%/venv
set COMMANDLINE_ARGS=%COMMANDLINE_ARGS% ^--ckpt-dir %A1111_HOME%/models/Stable-diffusion ^--hypernetwork-dir %A1111_HOME%/models/hypernetworks ^--embeddings-dir %A1111_HOME%/embeddings ^--lora-dir %A1111_HOME%/models/Loracall webui.bat
当看见启动命令如下则设置共享成功:
Launching Web UI with arguments: --xformers --forge-ref-a1111-home=sd目录/ --ckpt-dir sd目录/models/Stable-diffusion --vae-dir sd目录/models/VAE --hypernetwork-dir sd目录/models/hypernetworks --embeddings-dir sd目录/embeddings --lora-dir /models/lora --controlnet-dir sd目录/models/ControlNet --controlnet-preprocessor-models-dir sd目录/extensions/sd-webui-controlnet/annotator/downloads
Forge启动
从启动界面可以看到,Forge的用户使用界面与sd-web-ui完美的保持WebUI不变。这对新手用户上手门槛降低了极大的门槛。在启动界面中,能够看见新增的SVD、Z123两个tab,这是前文说的Unet Patcher带来的新特性。
另外作者提到,Forge在保持了前端界面一致性,并承诺永远不增加任何不必要的改变。后端则移除了所有与资源管理相关的WebUI代码,并重新构建了后端的全部基础设施,是一个重大的重构过程。
Forge插件不会共享,和webui一样,使用extension安装或者手工从webui复制。
sd-webui-forge体验
在本地rtx4090 24G显存的Linux环境中,使用sd_xl_base_1.0模型绘图,能够看见对应性能提升。耗时3.2秒,平均7.18GB显存使用,最高峰8.46GB,系统使用率42.1%。相信对于其他低显存机器,有更显著的推理提升。
使用图像扩大算法R-ESRGAN 4x+,扩大2X体验。工具设置参数如下:
耗时18.1秒,平均13.6GB显存使用,最高峰17.72GB,系统使用率82.3%。
forge主要是对显存使用做了有效优化,对30系显卡提升比较明显,40系显卡提升空间不大。但是有一些新增插件支持会很好,比如:sd-forge-layerdiffusio,以及官方feature列表中的Playground v2.5支持也是期待的功能。
绘图体验
1girl, solo, portrait, dark hair, slicked back hair, simple background, shirt, parted lip, lips, expressionless
感兴趣的小伙伴,赠送全套AIGC学习资料,包含AI绘画、AI人工智能等前沿科技教程和软件工具,具体看这里。
AIGC技术的未来发展前景广阔,随着人工智能技术的不断发展,AIGC技术也将不断提高。未来,AIGC技术将在游戏和计算领域得到更广泛的应用,使游戏和计算系统具有更高效、更智能、更灵活的特性。同时,AIGC技术也将与人工智能技术紧密结合,在更多的领域得到广泛应用,对程序员来说影响至关重要。未来,AIGC技术将继续得到提高,同时也将与人工智能技术紧密结合,在更多的领域得到广泛应用。
一、AIGC所有方向的学习路线
AIGC所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照下面的知识点去找对应的学习资源,保证自己学得较为全面。
二、AIGC必备工具
工具都帮大家整理好了,安装就可直接上手!
三、最新AIGC学习笔记
当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。
四、AIGC视频教程合集
观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
五、实战案例
纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

相关文章:

超简易高效的 AI绘图工具—与sd-webui一致界面,6G显存最高提升75%出图速率!(附安装包)
大家好,我是灵魂画师向阳 今天给大家分享一个基于Stable Diffusion WebUI 构建的AI绘图工具—sd-webui-forge,该工具的目标在于简化插件开发,优化资源管理,加速推理。 Forge承诺永远不会对Stable Diffusion WebUI用户界面添加不…...

ArduPilot开源代码之OpticalFlow_backend
ArduPilot开源代码之OpticalFlow_backend 1. 源由2. Library设计3. 重要例程3.1 OpticalFlow_backend::_update_frontend3.2 OpticalFlow_backend::_applyYaw 4. 总结5. 参考资料 1. 源由 光流计是一种低成本定位传感器,所有的光流计设备传感驱动代码抽象公共部分统…...

设计模式探索:适配器模式
1. 适配器模式介绍 1.1 适配器模式介绍 适配器模式(adapter pattern)的原始定义是:将一个类的接口转换为客户期望的另一个接口,适配器可以让不兼容的两个类一起协同工作。 适配器模式的主要作用是把原本不兼容的接口,…...

OpenCV 寻找棋盘格角点及绘制
目录 一、概念 二、代码 2.1实现步骤 2.2完整代码 三、实现效果 一、概念 寻找棋盘格角点(Checkerboard Corners)是计算机视觉中相机标定(Camera Calibration)过程的重要步骤。 OpenCV 提供了函数 cv2.findChessboardCorners…...

【深度学习】PyTorch深度学习笔记02-线性模型
1. 监督学习 2. 数据集的划分 3. 平均平方误差MSE 4. 线性模型Linear Model - y x * w 用穷举法确定线性模型的参数 import numpy as np import matplotlib.pyplot as pltx_data [1.0, 2.0, 3.0] y_data [2.0, 4.0, 6.0]def forward(x):return x * wdef loss(x, y):y_pred…...

10.FreeRTOS_互斥量
互斥量概述 在博文“ FreeRTOS_信号量 ”中,使用了二进制信号量实现了互斥,保护了串口资源。博文链接如下: FreeRTOS_信号量-CSDN博客 但还是要引入互斥量的概念。互斥量与二进制信号量相比,能够多实现如下两个功能:…...

EtherCAT总线冗余让制造更安全更可靠更智能
冗余定义 什么是总线冗余功能?我们都知道,EtherCAT现场总线具有灵活的拓扑结构,设备间支持线型、星型、树型的连接方式,其中线型结构简单、传输效率高,大多数的现场应用中也是使用这种连接方式,如下图所示…...

Android IdleHandler源码分析
文章目录 Android IdleHandler源码分析概述前提基本用法源码分析添加和删除任务执行任务 应用场景 Android IdleHandler源码分析 概述 IdleHandler是一个接口,它定义在MessageQueue类中,用于在主线程的消息队列空闲时执行一些轻量级的任务。IdleHandle…...

Mac安装stable diffusion 工具
文章目录 1.安装 Homebrew2.安装 stable diffusion webui 的依赖3.下载 stable diffusion webui 代码4.启动 stable diffusion webui 本体5.下载模型6.这里可能会遇到一个clip-vit-large-patch14报错 参考:https://brew.idayer.com/install/stable-diffusion-webui/…...

CVE-2024-6387Open SSH漏洞彻底解决举措(含踩坑内容)
一、漏洞名称 OpenSSH 远程代码执行漏洞(CVE-2024-6387) 二、漏洞概述 Open SSH是基于SSH协议的安全网络通信工具,广泛应用于远程服务器管理、加密文件传输、端口转发、远程控制等多个领域。近日被爆出存在一个远程代码执行漏洞,由于Open SSH服务器端…...

python的简单爬取
需要的第三方模块 requests winr打开命令行输入cmd 简单爬取的基本格式(爬取百度logo为例) import requests url"http://www.baidu.com/img/PCtm_d9c8750bed0b3c7d089fa7d55720d6cf.png" resprequests.get(url)#回应 #保存到本地 with open(&…...

【WEB前端2024】3D智体编程:乔布斯3D纪念馆-第60集-agent训练资讯APP重点推荐AI资讯内容(含视频)
【WEB前端2024】3D智体编程:乔布斯3D纪念馆-第60集-agent训练资讯APP重点推荐AI资讯内容(含视频) 使用dtns.network德塔世界(开源的智体世界引擎),策划和设计《乔布斯超大型的开源3D纪念馆》的系列教程。d…...

【学术会议征稿】第三届智能电网与能源系统国际学术会议
第三届智能电网与能源系统国际学术会议 2024 3rd International Conference on Smart Grid and Energy Systems 第三届智能电网与能源系统国际学术会议(SGES 2024)将于2024年10月25日-27日在郑州召开。 智能电网可以优化能源布局,让现有能源…...

01. 课程简介
1. 课程简介 本课程的核心内容可以分为三个部分,分别是需要理解记忆的计算机底层基础,后端通用组件以及需要不断编码练习的数据结构和算法。 计算机底层基础可以包含计算机网络、操作系统、编译原理、计算机组成原理,后两者在面试中出现的频…...

iOS热门面试题(三)
面试题1:在iOS开发中,什么是MVC设计模式?请详细解释其各个组成部分,并给出一个实际应用场景,包括具体的代码实现。 答案: MVC设计模式是一种在软件开发中广泛使用的架构模式,特别是在iOS开发中…...

ECS中postTransform.Value = float4x4.Scale(1, math.sin(elapsedTime), 1)
在Unity的ECS(Entity Component System)架构中,postTransform.Value float4x4.Scale(1, math.sin(elapsedTime), 1); 用于设置一个变换矩阵的缩放部分。下面是对这行代码的详细解释: postTransform: 这是一个表示变换的组件或结构…...

VLM技术介绍
1、背景 视觉语言模型(Visual Language Models)是可以同时从图像和文本中学习以处理许多任务的模型,从视觉问答到图像字幕。 视觉识别(如图像分类、物体保护和语义分割)是计算机视觉研究中一个长期存在的难题ÿ…...

x264 编码器 AArch64 汇编函数模块关系分析
x264 编码器 AArch64 汇编介绍 x264 是一个流行的开源视频编码器,它实现了 H.264/MPEG-4 AVC 标准。x264 项目致力于提供一个高性能、高质量的编码器,支持多种平台和架构。对于 AArch64(即 64 位 ARM 架构),x264 编码器利用该架构的特性来优化编码过程。在 x264 编码器中,…...

windows10开启防火墙,增加入站规则后不生效,还是不能访问后端程序
一、背景: 公司护网要求开启防火墙,开启防火墙后,前后端分离的项目调试受影响,于是增加入站规则开放固定的后台服务端口,增加的mysql端口3306和redis端口6379,别人都可以访问,但是程序的端口808…...

academic-homepage:快速搭建个人学术主页,页面内容包括个人简介、教育经历、发布过的学术列表等,同时页面布局兼容移动端。
今天给大家分享GitHub 上一个开源的 GitHub Pages 模板 academic-homepage。 可帮助你快速搭建个人学术主页,页面内容包括个人简介、教育经历、发布过的学术列表等最基本内容,同时页面布局兼容移动端。 相关链接 github.com/luost26/academic-homepage …...

.env.development、.env.production、.env.staging
环境变量文件(如 .env.development、.env.production、.env.staging)用于根据不同的环境(开发、生产、测试等)配置应用程序的行为。 作用 .env.development:用于开发环境的配置。开发人员在本地开发时会使用这个文件…...

国密证书(gmssl)在Kylin Server V10下安装
1.查看操作系统信息 [root@localhost ~]# cat /etc/.kyinfo [dist] name=Kylin milestone=Server-V10-GFB-Release-ZF9_01-2204-Build03 arch=arm64 beta=False time=2023-01-09 11:04:36 dist_id=Kylin-Server-V10-GFB-Release-ZF9_01-2204-Build03-arm64-2023-01-09 11:04:…...

【数据服务篇】法律快车问答数据:为法律智能化铺就道路
数据来源 法律快车汇集了广泛的法律问题和专业律师的回答,这些来自用户和律师的数据构成了丰富的问答资源。用户通过平台提交各类法律疑问,得到资深律师的详尽解答,形成了一系列真实、多样化的法律案例和讨论。 数据获取见文末。 数据内容…...

各向异性含水层中地下水三维流基本微分方程的推导(二)
各向异性含水层中地下水三维流基本微分方程的推导 参考文献: [1] 刘欣怡,付小莉.论连续性方程的推导及几种形式转换的方法[J].力学与实践,2023,45(02):469-474. 书接上回: 我们能得到三个方向的流入流出平衡方程: ∂ ρ u x ∂ x d x d y d…...

2024 微信小程序 学习笔记 第一天
微信公众平台 (qq.com) 小程序代码的构成 项目结构 JSON 配置文件 WXML 模板 WXSS 样式 JS 逻辑交互 小程序的宿主环境 宿主 通信模型 运行机制 组件 视图组件 view scrioll-view swiper swiper-item swiper属性 text button image image mode属性 小程序API 协…...

PCIe驱动开发(3)— 驱动设备文件的创建与操作
PCIe驱动开发(3)— 驱动设备文件的创建与操作 一、前言 在 Linux 中一切皆为文件,驱动加载成功以后会在“/dev”目录下生成一个相应的文件,应用程序通过对这个名为“/dev/xxx” (xxx 是具体的驱动文件名字)的文件进行相应的操作即…...

【Redis】简单了解Redis中常用的命令与数据结构
希望文章能给到你启发和灵感~ 如果觉得文章对你有帮助的话,点赞 关注 收藏 支持一下博主吧~ 阅读指南 开篇说明一、基础环境说明1.1 硬件环境1.2 软件环境 二、Redis的特点和适用场景三、Redis的数据类型和使用3.1字符串(String&…...

IDEA启动Web项目总是提示端口占用
文章目录 IDEA启动Web项目总是提示端口占用一、前言1.场景2.环境 二、正文1.场景一:真端口占用2. 场景二:假端口占用 IDEA启动Web项目总是提示端口占用 一、前言 1.场景 IDEA启动Web项目总是提示端口占用: 确实是端口被占用,比如:没有正常…...

JRT打印鉴定记录单
良好的基础会使上层实现越做越简单,jrt在开始写业务之前就把运用场景需要的基础实验和设计完毕了。基于jrt的基础可以很轻松的实现强大的打印效果。jrt的打印和lodop比较像,是高度为满足建议系统打印定制的打印实现,设计器可能没lodop通用&am…...

数据处理-Matplotlib 绘图展示
文章目录 1. Matplotlib 简介2. 安装3. Matplotlib Pyplot4. 绘制图表1. 折线图2. 散点图3. 柱状图4. 饼图5. 直方图 5. 中文显示 1. Matplotlib 简介 Matplotlib 是 Python 的绘图库,它能让使用者很轻松地将数据图形化,并且提供多样化的输出格式。 Ma…...