当前位置: 首页 > news >正文

深层神经网络示例

在这里插入图片描述
维度说明:

A[L]、Z[L]:(本层神经元个数、样本数)
W[L]:(本层神经元个数、上层神经元个数)
b[L]:(本层神经元个数、1)

dZ[L]:dA[L] * g’A(Z[L])
dZ[L]:(本层神经元个数、样本数)
dw = dL/dz * dz/dw = dz*x(链式法则)
db = dz(链式法则)
dW[L]:(本层神经元个数、上层神经元个数)
dA[L]:(本层神经元个数、样本数)
da = dz * w
dA[L-1] = W[L].T dZ[L],注意这里没有除以神经元个数,得到平均da。比如结果的第一个元素是多个dw1 * dz + dw1 * dz+ …dw1 * dz(神经元个数)的累加和

输出层采用sigmoid,隐藏层采用tanh

import numpy as np
# 设置一些画图相关的参数
import matplotlib.pyplot as pltplt.rcParams['figure.figsize'] = (5.0, 4.0)
plt.rcParams['image.interpolation'] = 'nearest'
plt.rcParams['image.cmap'] = 'gray'
from project_03.utils.dnn_utils import *
from project_03.utils.testCases import *def load_dataset():train_dataset = h5py.File('../deep_learn_01/project_01/datasets/train_catvnoncat.h5', 'r')train_set_x_orig = np.array(train_dataset['train_set_x'][:])train_set_y_orig = np.array(train_dataset["train_set_y"][:])  # 加载训练数据test_dataset = h5py.File('../deep_learn_01/project_01/datasets/test_catvnoncat.h5', "r")  # 加载测试数据test_set_x_orig = np.array(test_dataset["test_set_x"][:])test_set_y_orig = np.array(test_dataset["test_set_y"][:])classes = np.array(test_dataset["list_classes"][:])  # 加载标签类别数据,这里的类别只有两种,1代表有猫,0代表无猫train_set_y_orig = train_set_y_orig.reshape((1, train_set_y_orig.shape[0]))  # 把数组的维度从(209,)变成(1, 209),这样好方便后面进行计算[1 1 0 1] -> [[1][1][0][1]]test_set_y_orig = test_set_y_orig.reshape((1, test_set_y_orig.shape[0]))  # 从(50,)变成(1, 50)return train_set_x_orig, train_set_y_orig, test_set_x_orig, test_set_y_orig, classesdef sigmoid(Z):A = 1 / (1 + np.exp(-Z))return Adef relu(Z):A = np.maximum(0, Z)assert (A.shape == Z.shape)return Adef initialize_parameters_deep(layers_dims):""":param layers_dims: list of neuron numexample: layer_dims=[5,4,3],表示输入层有5个神经元,第一层有4个,最后二层有3个神经元(还有输出层的1个神经元):return: parameters: the w,b of each layer"""np.random.seed(1)parameters = {}L = len(layers_dims)for l in range(1, L):parameters[f"W{l}"] = np.random.randn(layers_dims[l], layers_dims[l - 1]) / np.sqrt(layers_dims[l - 1])parameters[f"b{l}"] = np.zeros((layers_dims[l], 1))assert (parameters[f"W{l}"].shape == (layers_dims[l], layers_dims[l - 1]))assert (parameters[f"b{l}"].shape == (layers_dims[l], 1))return parameters  # W1,b1,W2,b2def linear_forward(A, W, b):"""线性前向传播"""Z = np.dot(W, A) + bassert (Z.shape == (W.shape[0], A.shape[1]))return Zdef linear_activation_forward(A_prev, W, b, activation):""":param A_prev: 上一层得到的A,输入到本层来计算本层的Z和A,第一层时A_prev就是输入X:param W:本层的w:param b:本层的b:param activation: 激活函数"""Z = linear_forward(A_prev, W, b)if activation == "sigmoid":A = sigmoid(Z)elif activation == "relu":A = relu(Z)else:assert (1 != 1), "there is no support activation!"assert (A.shape == (W.shape[0], A_prev.shape[1]))linear_cache = (A_prev, W, b)cache = (linear_cache, Z)return A, cachedef L_model_forward(X, parameters):"""前向传播:param X: 输入特征:param parameters: 每一层的初始化w,b"""caches = []A = XL = len(parameters) // 2  # W1,b1,W2,b2, L=2for l in range(1, L):A_prev = AA, cache = linear_activation_forward(A_prev, parameters[f"W{l}"], parameters[f"b{l}"], 'relu')caches.append(cache)  # A1,(X,W1,b1,Z1)AL, cache = linear_activation_forward(A, parameters[f"W{L}"], parameters[f"b{L}"], activation="sigmoid")caches.append(cache)  # A2,(A1,W2,b2,Z2)assert (AL.shape == (1, X.shape[1]))return AL, cachesdef compute_cost(AL, Y):m = Y.shape[1]logprobs = np.multiply(Y, np.log(AL)) + np.multiply((1 - Y), np.log(1 - AL))cost = (-1 / m) * np.sum(logprobs)assert (cost.shape == ())return costdef linear_backward(dZ, cache):""":param dZ: 后面一层的dZ:param cache: 前向传播保存下来的本层的变量:return 本层的dw、db,前一层da"""A_prew, W, b = cachem = A_prew.shape[1]dW = np.dot(dZ, A_prew.T) / mdb = np.sum(dZ, axis=1, keepdims=True) / mdA_prev = np.dot(W.T, dZ)assert (dA_prev.shape == A_prew.shape)assert (dW.shape == W.shape)assert (db.shape == b.shape)return dA_prev, dW, dbdef linear_activation_backward(dA, cache, activation):""":param dA: 本层的dA:param cache: 前向传播保存的本层的变量:param activation: 激活函数:"sigmoid"或"relu":return 本层的dw、db,前一次的dA"""linear_cache, Z = cache# 首先计算本层的dZif activation == 'relu':dZ = 1 * dAdZ[Z <= 0] = 0elif activation == 'sigmoid':A = sigmoid(Z)dZ = dA * A * (1 - A)else:assert (1 != 1), "there is no support activation!"assert (dZ.shape == Z.shape)# 这里我们又顺带根据本层的dZ算出本层的dW和db以及前一层的dAdA_prev, dW, db = linear_backward(dZ, linear_cache)return dA_prev, dW, dbdef L_model_backward(AL, Y, caches):""":param AL: 最后一层A:param Y: 真实标签:param caches: 前向传播的保存的每一层的相关变量  (A_prev, W, b),Z"""grads = {}L = len(caches)  # 2Y = Y.reshape(AL.shape)  # 让真实标签与预测标签的维度一致dAL = -np.divide(Y, AL) + np.divide(1 - Y, 1 - AL)  # dA2# 计算最后一层的dW和db,由成本函数来计算current_cache = caches[-1]  # 1,2grads[f"dA{L - 1}"], grads[f"dW{L}"], grads[f"db{L}"] = linear_activation_backward(dAL, current_cache,"sigmoid")  # dA1, dW2, db2# 计算前L-1层的dw和db,因为最后一层用的是sigmoid,for c in reversed(range(1, L)):  # reversed(range(1,L))的结果是L-1,L-2...1。是不包括L的。第0层是输入层,不必计算。 caches[0,1] L = 2  1,1# c表示当前层grads[f"dA{c - 1}"], grads[f"dW{c}"], grads[f"db{c}"] = linear_activation_backward(grads[f"dA{c}"],caches[c - 1],"relu")return gradsdef update_parameters(parameters, grads, learning_rate):L = len(parameters) // 2for l in range(1, L + 1):parameters[f"W{l}"] = parameters[f"W{l}"] - grads[f"dW{l}"] * learning_rateparameters[f"b{l}"] = parameters[f"b{l}"] - grads[f"db{l}"] * learning_ratereturn parametersdef dnn_model(X, Y, layers_dim, learning_rate=0.0075, num_iterations=3000, print_cost=False):np.random.seed(1)costs = []parameters = initialize_parameters_deep(layers_dim)for i in range(0, num_iterations):AL, caches = L_model_forward(X, parameters)cost = compute_cost(AL, Y)grads = L_model_backward(AL, Y, caches)parameters = update_parameters(parameters, grads, learning_rate)if print_cost and i % 100 == 0:print("训练%i次后成本是: %f" % (i, cost))costs.append(cost)# 画出成本曲线图plt.plot(np.squeeze(costs))plt.ylabel('cost')plt.xlabel('iterations (per tens)')plt.title("Learning rate =" + str(learning_rate))plt.show()return parametersdef predict(X, parameters):m = X.shape[1]n = len(parameters) // 2p = np.zeros((1, m))probas, caches = L_model_forward(X, parameters)# 将预测结果转化成0和1的形式,即大于0.5的就是1,否则就是0for i in range(0, probas.shape[1]):if probas[0, i] > 0.5:p[0, i] = 1else:p[0, i] = 0return pif __name__ == "__main__":train_set_x_orig, train_set_y, test_set_x_orig, test_set_y, classes = load_dataset()# 我们要清楚变量的维度,否则后面会出很多问题。下面我把他们的维度打印出来。train_set_x_flatten = train_set_x_orig.reshape(train_set_x_orig.shape[0], -1).Ttest_set_x_flatten = test_set_x_orig.reshape(test_set_x_orig.shape[0], -1).Tprint("train_set_x_flatten shape: " + str(train_set_x_flatten.shape))print("test_set_x_flatten shape: " + str(test_set_x_flatten.shape))train_set_x = train_set_x_flatten / 255test_set_x = test_set_x_flatten / 255layers_dims = [12288, 20, 7, 5, 1]# 根据上面的层次信息来构建一个深度神经网络,并且用之前加载的数据集来训练这个神经网络,得出训练后的参数parameters = dnn_model(train_set_x, train_set_y, layers_dims, num_iterations=2000, print_cost=True)# 对训练数据集进行预测pred_train = predict(train_set_x, parameters)print("预测准确率是: " + str(np.sum((pred_train == train_set_y) / train_set_x.shape[1])))# 对测试数据集进行预测pred_test = predict(test_set_x, parameters)print("预测准确率是: " + str(np.sum((pred_test == test_set_y) / test_set_x.shape[1])))

相关文章:

深层神经网络示例

维度说明&#xff1a; A[L]、Z[L]&#xff1a;&#xff08;本层神经元个数、样本数&#xff09; W[L]&#xff1a;&#xff08;本层神经元个数、上层神经元个数&#xff09; b[L]&#xff1a;&#xff08;本层神经元个数、1&#xff09; dZ[L]&#xff1a;dA[L] * g’A&#xf…...

vue中获取剪切板中的内容

目录 1.说明 2.示例 3.总结 1.说明 在系统中的画面或者时外部文件中进行拷贝处理后&#xff0c;在页面中可以获取剪切板的内容。 2.示例 方式①(直接获取) // 异步函数获取剪切板内容 async function getClipboardContent(ev: any) {try {ev.preventDefault()const clip…...

十五、【机器学习】【监督学习】- 神经网络回归

系列文章目录 第一章 【机器学习】初识机器学习 第二章 【机器学习】【监督学习】- 逻辑回归算法 (Logistic Regression) 第三章 【机器学习】【监督学习】- 支持向量机 (SVM) 第四章【机器学习】【监督学习】- K-近邻算法 (K-NN) 第五章【机器学习】【监督学习】- 决策树…...

知识图谱和 LLM:利用Neo4j驾驭大型语言模型(探索真实用例)

这是关于 Neo4j 的 NaLLM 项目的一篇博客文章。这个项目是为了探索、开发和展示这些 LLM 与 Neo4j 结合的实际用途。 2023 年,ChatGPT 等大型语言模型 (LLM) 因其理解和生成类似人类的文本的能力而风靡全球。它们能够适应不同的对话环境、回答各种主题的问题,甚至模拟创意写…...

目标检测入门:4.目标检测中的一阶段模型和两阶段模型

在前面几章里&#xff0c;都只做了目标检测中的目标定位任务&#xff0c;并未做目标分类任务。目标检测作为计算机视觉领域的核心人物之一&#xff0c;旨在从图像中识别出所有感兴趣的目标&#xff0c;并确定它们的类别和位置。现在目标检测以一阶段模型和两阶段模型为代表的。…...

zookeeper+kafka消息队列群集部署

kafka拓扑架构 zookeeper拓扑架构...

[K8S]一、Flink on K8S

Kubernetes | Apache Flink 先编辑好这5个配置文件&#xff0c;然后再直接执行 kubectl create -f ./ kubectl get all kubectl get nodes kubectl get pods kubectl get pod -o wide kubectl get cm -- 获取所有的configmap 配置文件 kubectl logs pod_name -- 查看…...

系统架构设计师教程 第3章 信息系统基础知识-3.1 信息系统概述

系统架构设计师教程 第3章 信息系统基础知识-3.1 信息系统概述 3.1.1 信息系统的定义3.1.1.1 信息系统3.1.1.2 信息化3.1.2 信息系统的发展3.1.2.1 初始阶段3.1.2.2 传播阶段3.1.2.3 控制阶段3.1.2.4 集成阶段3.1.2.5 数据管理阶段3.1.2.6 成熟阶段3.1.3 信息系统的分类3.…...

Gemma的简单理解;Vertex AI的简单理解,与chatGpt区别

目录 Gemma的简单理解 Vertex AI的简单理解 Gemma Vertex AI Gemma Vertex AI和chatcpt区别 一、定义与功能 二、技术特点 三、应用场景 四、获取与部署 Gemma的简单理解 定义与功能: Gemma是谷歌开源的一款大语言模型,它采用了Gemini架构,并提供了20亿(2B)和7…...

Lua 数组

Lua 数组 Lua 是一种轻量级的编程语言&#xff0c;广泛用于游戏开发、脚本编写和其他应用程序。在 Lua 中&#xff0c;数组是一种非常基础和重要的数据结构。本文将详细介绍 Lua 数组的概念、用法和操作方法。 数组的概念 在 Lua 中&#xff0c;数组实际上是一个列表&#x…...

游戏中的敏感词算法初探

在游戏中起名和聊天需要服务器判断是否含有敏感词&#xff0c;从而拒绝或屏蔽敏感词显示&#xff0c;这里枚举一些常用的算法和实际效果。 1.字符串匹配算法 常用的有KMP&#xff0c;核心就是预处理出next数组&#xff0c;也就是失配信息&#xff0c;时间复杂度在O(mn) 。还有个…...

使用Java和Apache Kafka Streams实现实时流处理应用

使用Java和Apache Kafka Streams实现实时流处理应用 大家好&#xff0c;我是微赚淘客系统3.0的小编&#xff0c;是个冬天不穿秋裤&#xff0c;天冷也要风度的程序猿&#xff01; 引言 实时流处理已经成为现代应用开发中不可或缺的一部分。Apache Kafka Streams是一个强大的库…...

分享 .NET EF6 查询并返回树形结构数据的 2 个思路和具体实现方法

前言 树形结构是一种很常见的数据结构&#xff0c;类似于现实生活中的树的结构&#xff0c;具有根节点、父子关系和层级结构。 所谓根节点&#xff0c;就是整个树的起始节点。 节点则是树中的元素&#xff0c;每个节点可以有零个或多个子节点&#xff0c;节点按照层级排列&a…...

【柴油机故障诊断】基于斑马优化算法ZOA优化柴油机故障诊断附Matlab代码

% 柴油机故障诊断 - 基于斑马优化算法(Zebra Optimization Algorithm,ZOA)优化Transformer模型 % 代码示例仅为演示用途,实际应用中可能需要根据具体情况进行适当修改 % 初始化参数 maxIterations = 100; % 最大迭代次数 populationSize = 50; % 种群大小 % 斑马优化算法…...

C1W4.Assignment.Naive Machine Translation and LSH

理论课&#xff1a;C1W4.Machine Translation and Document Search 文章目录 1. The word embeddings data for English and French words1.1The dataThe subset of dataLoad two dictionaries 1.2 Generate embedding and transform matricesExercise 1: Translating English…...

智能听诊器:宠物健康监测的革新者

宠物健康护理领域迎来了一项激动人心的技术革新——智能听诊器。这款创新设备以其卓越的精确度和用户友好的操作&#xff0c;为宠物主人提供了一种全新的健康监测方法。 使用智能听诊器时&#xff0c;只需将其放置在宠物身上&#xff0c;它便能立即捕捉到宠物胸腔的微小振动。…...

001、Mac系统上Stable Diffusion WebUI环境搭建

一、目标 如标题所述&#xff0c;在苹果电脑&#xff08;Mac&#xff09;上搭建一套Stable Diffusion本地服务&#xff0c;以实现本地AI生图目的。 二、安装步骤 1、准备源码【等价于准备软件】 # 安装一系列工具库&#xff0c;包括cmake,protobuf,rust,python3.10,git,wge…...

k8s一些名词解释

潮汐计算 是一种根据负载变化动态调整资源分配的计算模式。其核心思想是利用峰值和非峰值时段的资源需求差异,动态地扩展或缩减计算资源。在 Kubernetes 环境中,可以通过自动扩展(auto-scaling)机制,根据工作负载的变化自动调整计算资源,最大化资源利用率并减少不必要的…...

ArkUI组件——循环控制/List

循环控制 class Item{name: stringprice:number}private items:Array<Item> [new Item("A0",2399),new Item("BE",1999),new Item("Ro",2799)] ForEach(this.items,(item:Item) > {})List组件 列表List是一种复杂的容器&#xff0c;…...

定制开发AI智能名片商城微信小程序在私域流量池构建中的应用与策略

摘要 在数字经济蓬勃发展的今天&#xff0c;私域流量已成为企业竞争的新战场。定制开发AI智能名片商城微信小程序&#xff0c;作为私域流量池构建的创新工具&#xff0c;正以其独特的优势助力企业实现用户资源的深度挖掘与高效转化。本文深入探讨了定制开发AI智能名片商城微信…...

模型参数、模型存储精度、参数与显存

模型参数量衡量单位 M&#xff1a;百万&#xff08;Million&#xff09; B&#xff1a;十亿&#xff08;Billion&#xff09; 1 B 1000 M 1B 1000M 1B1000M 参数存储精度 模型参数是固定的&#xff0c;但是一个参数所表示多少字节不一定&#xff0c;需要看这个参数以什么…...

如何在看板中体现优先级变化

在看板中有效体现优先级变化的关键措施包括&#xff1a;采用颜色或标签标识优先级、设置任务排序规则、使用独立的优先级列或泳道、结合自动化规则同步优先级变化、建立定期的优先级审查流程。其中&#xff0c;设置任务排序规则尤其重要&#xff0c;因为它让看板视觉上直观地体…...

聊聊 Pulsar:Producer 源码解析

一、前言 Apache Pulsar 是一个企业级的开源分布式消息传递平台&#xff0c;以其高性能、可扩展性和存储计算分离架构在消息队列和流处理领域独树一帜。在 Pulsar 的核心架构中&#xff0c;Producer&#xff08;生产者&#xff09; 是连接客户端应用与消息队列的第一步。生产者…...

el-switch文字内置

el-switch文字内置 效果 vue <div style"color:#ffffff;font-size:14px;float:left;margin-bottom:5px;margin-right:5px;">自动加载</div> <el-switch v-model"value" active-color"#3E99FB" inactive-color"#DCDFE6"…...

Psychopy音频的使用

Psychopy音频的使用 本文主要解决以下问题&#xff1a; 指定音频引擎与设备&#xff1b;播放音频文件 本文所使用的环境&#xff1a; Python3.10 numpy2.2.6 psychopy2025.1.1 psychtoolbox3.0.19.14 一、音频配置 Psychopy文档链接为Sound - for audio playback — Psy…...

LLM基础1_语言模型如何处理文本

基于GitHub项目&#xff1a;https://github.com/datawhalechina/llms-from-scratch-cn 工具介绍 tiktoken&#xff1a;OpenAI开发的专业"分词器" torch&#xff1a;Facebook开发的强力计算引擎&#xff0c;相当于超级计算器 理解词嵌入&#xff1a;给词语画"…...

如何理解 IP 数据报中的 TTL?

目录 前言理解 前言 面试灵魂一问&#xff1a;说说对 IP 数据报中 TTL 的理解&#xff1f;我们都知道&#xff0c;IP 数据报由首部和数据两部分组成&#xff0c;首部又分为两部分&#xff1a;固定部分和可变部分&#xff0c;共占 20 字节&#xff0c;而即将讨论的 TTL 就位于首…...

Unity | AmplifyShaderEditor插件基础(第七集:平面波动shader)

目录 一、&#x1f44b;&#x1f3fb;前言 二、&#x1f608;sinx波动的基本原理 三、&#x1f608;波动起来 1.sinx节点介绍 2.vertexPosition 3.集成Vector3 a.节点Append b.连起来 4.波动起来 a.波动的原理 b.时间节点 c.sinx的处理 四、&#x1f30a;波动优化…...

Mysql中select查询语句的执行过程

目录 1、介绍 1.1、组件介绍 1.2、Sql执行顺序 2、执行流程 2.1. 连接与认证 2.2. 查询缓存 2.3. 语法解析&#xff08;Parser&#xff09; 2.4、执行sql 1. 预处理&#xff08;Preprocessor&#xff09; 2. 查询优化器&#xff08;Optimizer&#xff09; 3. 执行器…...

代码随想录刷题day30

1、零钱兑换II 给你一个整数数组 coins 表示不同面额的硬币&#xff0c;另给一个整数 amount 表示总金额。 请你计算并返回可以凑成总金额的硬币组合数。如果任何硬币组合都无法凑出总金额&#xff0c;返回 0 。 假设每一种面额的硬币有无限个。 题目数据保证结果符合 32 位带…...