当前位置: 首页 > news >正文

pandas数据分析(三)

书接pandas数据分析(二)

文章目录

  • DataFrame数据处理与分析
    • 处理超市交易数据中的异常值
    • 处理超市交易数据中的缺失值
    • 处理超市交易数据中的重复值
    • 使用数据差分查看员工业绩波动情况
    • 使用透视表与交叉表查看业绩汇总数据
    • 使用重采样技术按时间段查看员工业绩

DataFrame数据处理与分析

处理超市交易数据中的异常值

导入数据

import pandas as pd
# 设置列对齐
pd.set_option('display.unicode.ambiguous_as_wide',True)
pd.set_option('display.unicode.east_asian_width',True)
# 读取全部数据,使用默认索引
df=pd.read_excel('./超市营业额2.xlsx')
df[df.交易额<200]#交易额低于200的数据

在这里插入图片描述

# 上浮50%之后仍低于200的数据
df.loc[df.交易额<200,'交易额']=df[df.交易额<200]['交易额'].map(lambda num:num*1.5)
df[df.交易额<200]

在这里插入图片描述

# 交易额高于3000的数据
df[df['交易额']>3000]

在这里插入图片描述

# 交易额低于200或高于3000的数据
df[(df.交易额<200)|(df.交易额>3000)]

在这里插入图片描述

# 低于200的交易额替换为固定的200
df.loc[df.交易额<200,'交易额']=200
# 高于3000的交易额替换为固定的3000
df.loc[df.交易额>3000,'交易额']=3000
# 交易额低于200或高于3000的数据
df[(df.交易额<200)|(df.交易额>3000)]

在这里插入图片描述

处理超市交易数据中的缺失值

DataFrame结构支持dropna()方法丢弃带有缺失值的数据行,或者使用fillna()方法对缺失值进行批量替换。

dropna(axis=0,how='any',thresh=None,subset=None,inplace=False)
  • how=any表示只要某行包含缺失值就丢弃;all表示某行全部为缺失值才丢弃。
  • thresh:用来指定保留包含几个非缺失值数据的行。
  • subset:用来指定在判断缺失值时只考虑哪些列。
fillna(value=None,method=None,axis=None,inplace=False,limit=None,downcast=None,**kwargs)
  • value:用来指定要替换的值
  • method:用来指定填充缺失值的方式。pad/ffill使用扫描过程中遇到的最后一个有效值一直填充到下一个有效值。backfill/bfill使用缺失值之后遇到的第一个有效值填充前面遇到的所有连续缺失值。
  • limit:用来指定设置了参数method时最多填充多少个连续的缺失值。
  • inplace:True原地替换,修改原数据;False返回一个新的DataFrame,不修改原数据。
len(df)#数据总行数

在这里插入图片描述

len(df.dropna())#丢弃缺失值后的行数

在这里插入图片描述

df[df['交易额'].isnull()]#包含缺失值的行

在这里插入图片描述

#使用固定值替换缺失值
from copy import deepcopy
dff=deepcopy(df)#深复制,不影响原来的df
dff.loc[dff.交易额.isnull(),'交易额']=1000
print(dff.iloc[[110,124,168],:])

在这里插入图片描述

#使用每人交易额均值替换缺失值
dff=deepcopy(df)
for i in dff[dff.交易额.isnull()].index:dff.loc[i,'交易额']=round(dff.loc[dff.姓名==dff.loc[i,'姓名'],'交易额'].mean())
print(dff.iloc[[110,124,168],:])

在这里插入图片描述

#使用整体均值的80%替换缺失值
df.fillna({'交易额':round(df['交易额'].mean()*0.8)},inplace=True)#替换原数据
print(df.iloc[[110,124,168],:])

在这里插入图片描述

处理超市交易数据中的重复值

len(df)#数据总行数

在这里插入图片描述

df[df.duplicated()]#重复行

在这里插入图片描述

# 一人同时负责多个柜台的排班
dff=df[['工号','姓名','日期','时段']]
dff=dff[dff.duplicated()]
for row in dff.values:print(df[(df.工号==row[0])&(df.日期==row[2])&(df.时段==row[3])])
df=df.drop_duplicates()#直接丢弃重复行
print('有效数据行数:',len(df))

在这里插入图片描述

#查看是否有录入错误的工号和姓名
dff=df[['工号','姓名']]
print(dff.drop_duplicates())

在这里插入图片描述

使用数据差分查看员工业绩波动情况

数据差分diff(periods=1,axis=0)
periods=1且axis=0表示每一行数据减去紧邻的上一行数据
periods=2且axis=0表示每一行数据减去此行上面第二行数据
axis=0表示按行进行纵向差分,axis=1表示按列进行横向差分

#每天交易额变化情况
dff=df.groupby(by='日期').sum()['交易额'].diff()
#格式化,正数前面带加号
print(dff.map(lambda num:'%+.2f'%num)[:5])

在这里插入图片描述

#张三每天交易总额变化情况
dff=df[df.姓名=='张三'].groupby(by='日期').sum()['交易额'].diff()
print(dff.map(lambda num:'%+.2f'%num)[:5])

在这里插入图片描述

使用透视表与交叉表查看业绩汇总数据

#每人每天交易总额
dff=df.groupby(by=['姓名','日期'],as_index=False).sum()
dff=dff.pivot(index='姓名',columns='日期',values='交易额')
dff

在这里插入图片描述

#交易总额低于5万元的员工前5天业绩
dff[dff.sum(axis=1)<50000].iloc[:,:5]

在这里插入图片描述

#交易总额低于5万元的员工姓名
print(dff[dff.sum(axis=1)<50000].index.values)
['周七' '钱八']
df.pivot_table(values='交易额',index='姓名',columns='日期',aggfunc='sum',margins=True)

在这里插入图片描述

#每人在各柜台的交易总额
dff=df.groupby(by=['姓名','柜台'],as_index=False).sum()
dff.pivot(index='姓名',columns='柜台',values='交易额')

在这里插入图片描述

#每人每天上班次数
df.pivot_table(values='交易额',index='姓名',columns='日期',aggfunc='count',margins=True)

在这里插入图片描述

#每人在各柜台上班次数
df.pivot_table(values='交易额',index='姓名',columns='柜台',aggfunc='count',margins=True)

在这里插入图片描述

#每人每天上班次数
pd.crosstab(df.姓名,df.日期,margins=True).iloc[:,:5]

在这里插入图片描述

#每人在各柜台上班总次数
pd.crosstab(df.姓名,df.柜台,margins=True)

在这里插入图片描述

#每人在各柜台交易总额
pd.crosstab(df.姓名,df.柜台,df.交易额,aggfunc='sum')

在这里插入图片描述

#每人在各柜台交易额平均值
pd.crosstab(df.姓名,df.柜台,df.交易额,aggfunc='mean').apply(lambda num:round(num,2))#保留两位小数

在这里插入图片描述

使用重采样技术按时间段查看员工业绩

重采样时间间隔 7D表示每7天采样一次。
label='left’表示使用采样周期的起始时间作为结果DataFrame的index;label='right’表示使用采样周期的结束时间作为结果DataFrame的index;
on指定根据哪一列进行重采样,要求该列数据为日期时间类型。

df.日期=pd.to_datetime(df.日期)
#每7天营业总额
df.resample('7D',on='日期').sum()['交易额']

在这里插入图片描述

#每7天营业总额
df.resample('7D',on='日期',label='right').sum()['交易额']

在这里插入图片描述

#每7天营业额平均值
func=lambda num:round(num,2)
df.resample('7D',on='日期',label='right').mean().apply(func)['交易额']

在这里插入图片描述

#每7天营业额平均值
import numpy as np
func=lambda item:round(np.sum(item)/len(item),2)
df.resample('7D',on='日期',label='right')['交易额'].apply(func)

在这里插入图片描述

相关文章:

pandas数据分析(三)

书接pandas数据分析&#xff08;二&#xff09; 文章目录DataFrame数据处理与分析处理超市交易数据中的异常值处理超市交易数据中的缺失值处理超市交易数据中的重复值使用数据差分查看员工业绩波动情况使用透视表与交叉表查看业绩汇总数据使用重采样技术按时间段查看员工业绩Da…...

cpu performance profiling

精彩文章分享1. android performanceAndroid 性能分析工具介绍 (qq.com)手机Android存储性能优化架构分析 (qq.com)抖音 Android 性能优化系列&#xff1a;启动优化之理论和工具篇 (qq.com)那些年&#xff0c;我们一起经历过的 Android 系统性能优化 (qq.com)Android卡顿&#…...

vue2启动项目npm run dev报错 Error: Cannot find module ‘babel-preset-es2015‘ 修改以及问题原因

报错内容如下图&#xff1a; 说找不到模块 babel-preset-es2015。 在报错之前&#xff0c;我正在修改代码&#xff0c;使用 ElementUI 的按需引入方式&#xff0c;修改了 babel.config.js 。 注意&#xff1a;vue/cli 脚手架4版本已经使用了 babel7 &#xff0c;所以项目中…...

*9 set up 注意点

1、set up 执行的时机&#xff1a;beforeCreate 之前执行一次&#xff0c;this 是 undefined 2、set up 的参数&#xff1a; props&#xff1a;值为对象&#xff0c;组件外传递属性&#xff0c;内部声明并且接收属性 context&#xff1a;上下文对象&#xff0c;其内部包含三个…...

linux目录——文件管理

个人简介&#xff1a;云计算网络运维专业人员&#xff0c;了解运维知识&#xff0c;掌握TCP/IP协议&#xff0c;每天分享网络运维知识与技能。座右铭&#xff1a;海不辞水&#xff0c;故能成其大&#xff1b;山不辞石&#xff0c;故能成其高。个人主页&#xff1a;小李会科技的…...

使用new bing简易教程

申请new bing 首先先申请new bing然后等待通过&#xff0c;如下图 申请完&#xff0c;用edge浏览器&#xff0c;若有科学方法&#xff0c;就能在右上角的聊天进行向AI提问 使用插件来进行直接访问New Bing 在edge浏览器中安装一个插件&#xff0c;地址为&#xff1a;Mod…...

idea插件分享 显著提高开发效率

idea插件 Prettier 作用&#xff1a;支持代码格式化&#xff08;java、js等&#xff09; 另外支持js内方法跳转和js中ajax请求跳转到java代码里面 下载&#xff1a;Prettier SQL Params Setter 作用&#xff1a;将日志中mapper输出preparing和paramters处理成完整可直接执行…...

文心一言发布我怎么看?

文心一言发布会 有想看发布会视频的朋友,关注爱书不爱输的程序猿,私信找我拿 我只简短的回答两个问题: 1.文心一言能否为百度止颓&#xff1f; 首先,百度的颓势是由于多种因素导致的&#xff0c;包括市场竞争压力、业务发展战略的失误、管理体制的问题等。要想止颓&#xff0c;…...

100. 增减序列

给定一个长度为 n 的数列 a1,a2,…,an&#xff0c;每次可以选择一个区间 [l,r]&#xff0c;使下标在这个区间内的数都加一或者都减一。 求至少需要多少次操作才能使数列中的所有数都一样&#xff0c;并求出在保证最少次数的前提下&#xff0c;最终得到的数列可能有多少种。 输入…...

操作系统之进程的初步认识(1)

进程1. 进程的相关概念1.1 进程的定义1.2 进程的概念(1)1.3 进程的概念(2)2. 进程和程序的区别3. 进程管理:3.1 进程的结构体有哪些属性(1) Pid(操作系统里指进程识别号)(2) 内存指针(3) 文件描述符表4. 进程调度:(1) 并行(2) 并发5. 进程调度需要的属性(1) 进程状态(2) 进程优…...

【Java】你真的懂封装吗?一文读懂封装-----建议收藏

博主简介&#xff1a;努力学习的预备程序媛一枚~博主主页&#xff1a; 是瑶瑶子啦所属专栏: Java岛冒险记【从小白到大佬之路】 前言 write in the front: 如何理解封装&#xff1f; 试想&#xff1a;我们使用微波炉的时候&#xff0c;只用设置好时间&#xff0c;按下“开始”…...

使用MobaXterm ssh远程登录Ubuntu 20.04

使用MobaXterm 远程登录Ubuntu 20.04 首先需要到官网下载一个MobaXterm 准备一台Ubuntu20.04的虚拟机。使用ifconfig查看IP 我这里的虚拟机是新安装的&#xff0c;所以会提示命令不存在&#xff0c;只要按照提示输入&#xff1a; sudo apt install net-tools接着等待安装完成…...

蓝桥杯历年真题训练

2012年第四届全国电子专业人才设计与技能大赛“自动售水机”设计任务书1. 系统框图接下来我们将任务分块&#xff1a; 1. 按键控制单元 设定按键 S7 为出水控制按键&#xff0c;当 S7 按下后&#xff0c;售水机持续出水&#xff08;继电器接通&#xff0c;指示 灯 L10 点亮&…...

Spring事务报错: org.springframework.transaction.UnexpectedRollbackException

异常信息&#xff1a;支持当前事务&#xff0c;如果不存在则抛出异常。事务被回滚&#xff0c;因为它被标记为仅回滚 org.springframework.transaction.UnexpectedRollbackException: Transaction rolled back because it has been marked as rollback-onlyat org.springframe…...

Spring:IOC和AOP

Spring&#xff1a;IOC和AOP一. IOC(1) 引入(2) 定义(3) 作用(4) 实现(5) DI依赖注入二. AOP(1) 概念(2) Spring中的AOP(3) 入门案例0. 准备&#xff1a;1. 定义通知类和通知方法&#xff1b;2. 在通知类中描述和定义切入点 pointcut3. 用注释绑定切入点和通知方法4. 通知类&am…...

【笔记】效率之门——Python中的函数式编程技巧

文章目录Python函数式编程1. 数据2. 推导式3. 函数式编程3.1. Lambda函数3.2. python内置函数3.3. 高阶函数4. 函数式编程的应用Python函数式编程 我的AI Studio项目&#xff1a;【笔记】LearnDL第三课&#xff1a;Python高级编程——抽象与封装 - 飞桨AI Studio (baidu.com) p…...

Java【多线程基础2】 Thread类 及其常用方法

文章目录前言一、Thread类1, 构造方法2, 常用成员属性3, 常用成员方法3.1, start 启动线程3.2, interrupt 中断线程 (重点)3.2.1, 手动设置标记位3.2.2, 使用内置标记位3.3.3, interrupt 方法 的作用3.3 sleep 休眠线程3.4, jion 等待线程3.5 获取当前线程的引用总结前言 各位读…...

JVM调优实战及常量池详解

目录 阿里巴巴Arthas详解 Arthas使用场景 Arthas使用 GC日志详解 如何分析GC日志 CMS G1...

ChatGPT研究分析:GPT-4做了什么

前脚刚研究了一轮GPT3.5&#xff0c;OpenAI很快就升级了GPT-4&#xff0c;整体表现有进一步提升。追赶一下潮流&#xff0c;研究研究GPT-4干了啥。本文内容全部源于对OpenAI公开的技术报告的解读&#xff0c;通篇以PR效果为主&#xff0c;实际内容不多。主要强调的工作&#xf…...

我为什么要写博客,写博客的意义是什么??

曾经何时我也不知道&#xff0c;怎样才能变成我自己所羡慕的大佬&#xff01;&#xff01;在一次次的CSDN阅读的过程中&#xff0c;结实了许多志同道合的人&#xff01;&#xff01;包过凉哥&#xff0c;擦姐……大佬&#xff0c;但是&#xff0c;很遗憾&#xff0c;与这些人只…...

LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器的上位机配置操作说明

LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器专为工业环境精心打造&#xff0c;完美适配AGV和无人叉车。同时&#xff0c;集成以太网与语音合成技术&#xff0c;为各类高级系统&#xff08;如MES、调度系统、库位管理、立库等&#xff09;提供高效便捷的语音交互体验。 L…...

龙虎榜——20250610

上证指数放量收阴线&#xff0c;个股多数下跌&#xff0c;盘中受消息影响大幅波动。 深证指数放量收阴线形成顶分型&#xff0c;指数短线有调整的需求&#xff0c;大概需要一两天。 2025年6月10日龙虎榜行业方向分析 1. 金融科技 代表标的&#xff1a;御银股份、雄帝科技 驱动…...

未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?

编辑&#xff1a;陈萍萍的公主一点人工一点智能 未来机器人的大脑&#xff1a;如何用神经网络模拟器实现更智能的决策&#xff1f;RWM通过双自回归机制有效解决了复合误差、部分可观测性和随机动力学等关键挑战&#xff0c;在不依赖领域特定归纳偏见的条件下实现了卓越的预测准…...

conda相比python好处

Conda 作为 Python 的环境和包管理工具&#xff0c;相比原生 Python 生态&#xff08;如 pip 虚拟环境&#xff09;有许多独特优势&#xff0c;尤其在多项目管理、依赖处理和跨平台兼容性等方面表现更优。以下是 Conda 的核心好处&#xff1a; 一、一站式环境管理&#xff1a…...

stm32G473的flash模式是单bank还是双bank?

今天突然有人stm32G473的flash模式是单bank还是双bank&#xff1f;由于时间太久&#xff0c;我真忘记了。搜搜发现&#xff0c;还真有人和我一样。见下面的链接&#xff1a;https://shequ.stmicroelectronics.cn/forum.php?modviewthread&tid644563 根据STM32G4系列参考手…...

Linux简单的操作

ls ls 查看当前目录 ll 查看详细内容 ls -a 查看所有的内容 ls --help 查看方法文档 pwd pwd 查看当前路径 cd cd 转路径 cd .. 转上一级路径 cd 名 转换路径 …...

P3 QT项目----记事本(3.8)

3.8 记事本项目总结 项目源码 1.main.cpp #include "widget.h" #include <QApplication> int main(int argc, char *argv[]) {QApplication a(argc, argv);Widget w;w.show();return a.exec(); } 2.widget.cpp #include "widget.h" #include &q…...

Qt Http Server模块功能及架构

Qt Http Server 是 Qt 6.0 中引入的一个新模块&#xff0c;它提供了一个轻量级的 HTTP 服务器实现&#xff0c;主要用于构建基于 HTTP 的应用程序和服务。 功能介绍&#xff1a; 主要功能 HTTP服务器功能&#xff1a; 支持 HTTP/1.1 协议 简单的请求/响应处理模型 支持 GET…...

相机从app启动流程

一、流程框架图 二、具体流程分析 1、得到cameralist和对应的静态信息 目录如下: 重点代码分析: 启动相机前,先要通过getCameraIdList获取camera的个数以及id,然后可以通过getCameraCharacteristics获取对应id camera的capabilities(静态信息)进行一些openCamera前的…...

Module Federation 和 Native Federation 的比较

前言 Module Federation 是 Webpack 5 引入的微前端架构方案&#xff0c;允许不同独立构建的应用在运行时动态共享模块。 Native Federation 是 Angular 官方基于 Module Federation 理念实现的专为 Angular 优化的微前端方案。 概念解析 Module Federation (模块联邦) Modul…...