当前位置: 首页 > news >正文

pandas数据分析(三)

书接pandas数据分析(二)

文章目录

  • DataFrame数据处理与分析
    • 处理超市交易数据中的异常值
    • 处理超市交易数据中的缺失值
    • 处理超市交易数据中的重复值
    • 使用数据差分查看员工业绩波动情况
    • 使用透视表与交叉表查看业绩汇总数据
    • 使用重采样技术按时间段查看员工业绩

DataFrame数据处理与分析

处理超市交易数据中的异常值

导入数据

import pandas as pd
# 设置列对齐
pd.set_option('display.unicode.ambiguous_as_wide',True)
pd.set_option('display.unicode.east_asian_width',True)
# 读取全部数据,使用默认索引
df=pd.read_excel('./超市营业额2.xlsx')
df[df.交易额<200]#交易额低于200的数据

在这里插入图片描述

# 上浮50%之后仍低于200的数据
df.loc[df.交易额<200,'交易额']=df[df.交易额<200]['交易额'].map(lambda num:num*1.5)
df[df.交易额<200]

在这里插入图片描述

# 交易额高于3000的数据
df[df['交易额']>3000]

在这里插入图片描述

# 交易额低于200或高于3000的数据
df[(df.交易额<200)|(df.交易额>3000)]

在这里插入图片描述

# 低于200的交易额替换为固定的200
df.loc[df.交易额<200,'交易额']=200
# 高于3000的交易额替换为固定的3000
df.loc[df.交易额>3000,'交易额']=3000
# 交易额低于200或高于3000的数据
df[(df.交易额<200)|(df.交易额>3000)]

在这里插入图片描述

处理超市交易数据中的缺失值

DataFrame结构支持dropna()方法丢弃带有缺失值的数据行,或者使用fillna()方法对缺失值进行批量替换。

dropna(axis=0,how='any',thresh=None,subset=None,inplace=False)
  • how=any表示只要某行包含缺失值就丢弃;all表示某行全部为缺失值才丢弃。
  • thresh:用来指定保留包含几个非缺失值数据的行。
  • subset:用来指定在判断缺失值时只考虑哪些列。
fillna(value=None,method=None,axis=None,inplace=False,limit=None,downcast=None,**kwargs)
  • value:用来指定要替换的值
  • method:用来指定填充缺失值的方式。pad/ffill使用扫描过程中遇到的最后一个有效值一直填充到下一个有效值。backfill/bfill使用缺失值之后遇到的第一个有效值填充前面遇到的所有连续缺失值。
  • limit:用来指定设置了参数method时最多填充多少个连续的缺失值。
  • inplace:True原地替换,修改原数据;False返回一个新的DataFrame,不修改原数据。
len(df)#数据总行数

在这里插入图片描述

len(df.dropna())#丢弃缺失值后的行数

在这里插入图片描述

df[df['交易额'].isnull()]#包含缺失值的行

在这里插入图片描述

#使用固定值替换缺失值
from copy import deepcopy
dff=deepcopy(df)#深复制,不影响原来的df
dff.loc[dff.交易额.isnull(),'交易额']=1000
print(dff.iloc[[110,124,168],:])

在这里插入图片描述

#使用每人交易额均值替换缺失值
dff=deepcopy(df)
for i in dff[dff.交易额.isnull()].index:dff.loc[i,'交易额']=round(dff.loc[dff.姓名==dff.loc[i,'姓名'],'交易额'].mean())
print(dff.iloc[[110,124,168],:])

在这里插入图片描述

#使用整体均值的80%替换缺失值
df.fillna({'交易额':round(df['交易额'].mean()*0.8)},inplace=True)#替换原数据
print(df.iloc[[110,124,168],:])

在这里插入图片描述

处理超市交易数据中的重复值

len(df)#数据总行数

在这里插入图片描述

df[df.duplicated()]#重复行

在这里插入图片描述

# 一人同时负责多个柜台的排班
dff=df[['工号','姓名','日期','时段']]
dff=dff[dff.duplicated()]
for row in dff.values:print(df[(df.工号==row[0])&(df.日期==row[2])&(df.时段==row[3])])
df=df.drop_duplicates()#直接丢弃重复行
print('有效数据行数:',len(df))

在这里插入图片描述

#查看是否有录入错误的工号和姓名
dff=df[['工号','姓名']]
print(dff.drop_duplicates())

在这里插入图片描述

使用数据差分查看员工业绩波动情况

数据差分diff(periods=1,axis=0)
periods=1且axis=0表示每一行数据减去紧邻的上一行数据
periods=2且axis=0表示每一行数据减去此行上面第二行数据
axis=0表示按行进行纵向差分,axis=1表示按列进行横向差分

#每天交易额变化情况
dff=df.groupby(by='日期').sum()['交易额'].diff()
#格式化,正数前面带加号
print(dff.map(lambda num:'%+.2f'%num)[:5])

在这里插入图片描述

#张三每天交易总额变化情况
dff=df[df.姓名=='张三'].groupby(by='日期').sum()['交易额'].diff()
print(dff.map(lambda num:'%+.2f'%num)[:5])

在这里插入图片描述

使用透视表与交叉表查看业绩汇总数据

#每人每天交易总额
dff=df.groupby(by=['姓名','日期'],as_index=False).sum()
dff=dff.pivot(index='姓名',columns='日期',values='交易额')
dff

在这里插入图片描述

#交易总额低于5万元的员工前5天业绩
dff[dff.sum(axis=1)<50000].iloc[:,:5]

在这里插入图片描述

#交易总额低于5万元的员工姓名
print(dff[dff.sum(axis=1)<50000].index.values)
['周七' '钱八']
df.pivot_table(values='交易额',index='姓名',columns='日期',aggfunc='sum',margins=True)

在这里插入图片描述

#每人在各柜台的交易总额
dff=df.groupby(by=['姓名','柜台'],as_index=False).sum()
dff.pivot(index='姓名',columns='柜台',values='交易额')

在这里插入图片描述

#每人每天上班次数
df.pivot_table(values='交易额',index='姓名',columns='日期',aggfunc='count',margins=True)

在这里插入图片描述

#每人在各柜台上班次数
df.pivot_table(values='交易额',index='姓名',columns='柜台',aggfunc='count',margins=True)

在这里插入图片描述

#每人每天上班次数
pd.crosstab(df.姓名,df.日期,margins=True).iloc[:,:5]

在这里插入图片描述

#每人在各柜台上班总次数
pd.crosstab(df.姓名,df.柜台,margins=True)

在这里插入图片描述

#每人在各柜台交易总额
pd.crosstab(df.姓名,df.柜台,df.交易额,aggfunc='sum')

在这里插入图片描述

#每人在各柜台交易额平均值
pd.crosstab(df.姓名,df.柜台,df.交易额,aggfunc='mean').apply(lambda num:round(num,2))#保留两位小数

在这里插入图片描述

使用重采样技术按时间段查看员工业绩

重采样时间间隔 7D表示每7天采样一次。
label='left’表示使用采样周期的起始时间作为结果DataFrame的index;label='right’表示使用采样周期的结束时间作为结果DataFrame的index;
on指定根据哪一列进行重采样,要求该列数据为日期时间类型。

df.日期=pd.to_datetime(df.日期)
#每7天营业总额
df.resample('7D',on='日期').sum()['交易额']

在这里插入图片描述

#每7天营业总额
df.resample('7D',on='日期',label='right').sum()['交易额']

在这里插入图片描述

#每7天营业额平均值
func=lambda num:round(num,2)
df.resample('7D',on='日期',label='right').mean().apply(func)['交易额']

在这里插入图片描述

#每7天营业额平均值
import numpy as np
func=lambda item:round(np.sum(item)/len(item),2)
df.resample('7D',on='日期',label='right')['交易额'].apply(func)

在这里插入图片描述

相关文章:

pandas数据分析(三)

书接pandas数据分析&#xff08;二&#xff09; 文章目录DataFrame数据处理与分析处理超市交易数据中的异常值处理超市交易数据中的缺失值处理超市交易数据中的重复值使用数据差分查看员工业绩波动情况使用透视表与交叉表查看业绩汇总数据使用重采样技术按时间段查看员工业绩Da…...

cpu performance profiling

精彩文章分享1. android performanceAndroid 性能分析工具介绍 (qq.com)手机Android存储性能优化架构分析 (qq.com)抖音 Android 性能优化系列&#xff1a;启动优化之理论和工具篇 (qq.com)那些年&#xff0c;我们一起经历过的 Android 系统性能优化 (qq.com)Android卡顿&#…...

vue2启动项目npm run dev报错 Error: Cannot find module ‘babel-preset-es2015‘ 修改以及问题原因

报错内容如下图&#xff1a; 说找不到模块 babel-preset-es2015。 在报错之前&#xff0c;我正在修改代码&#xff0c;使用 ElementUI 的按需引入方式&#xff0c;修改了 babel.config.js 。 注意&#xff1a;vue/cli 脚手架4版本已经使用了 babel7 &#xff0c;所以项目中…...

*9 set up 注意点

1、set up 执行的时机&#xff1a;beforeCreate 之前执行一次&#xff0c;this 是 undefined 2、set up 的参数&#xff1a; props&#xff1a;值为对象&#xff0c;组件外传递属性&#xff0c;内部声明并且接收属性 context&#xff1a;上下文对象&#xff0c;其内部包含三个…...

linux目录——文件管理

个人简介&#xff1a;云计算网络运维专业人员&#xff0c;了解运维知识&#xff0c;掌握TCP/IP协议&#xff0c;每天分享网络运维知识与技能。座右铭&#xff1a;海不辞水&#xff0c;故能成其大&#xff1b;山不辞石&#xff0c;故能成其高。个人主页&#xff1a;小李会科技的…...

使用new bing简易教程

申请new bing 首先先申请new bing然后等待通过&#xff0c;如下图 申请完&#xff0c;用edge浏览器&#xff0c;若有科学方法&#xff0c;就能在右上角的聊天进行向AI提问 使用插件来进行直接访问New Bing 在edge浏览器中安装一个插件&#xff0c;地址为&#xff1a;Mod…...

idea插件分享 显著提高开发效率

idea插件 Prettier 作用&#xff1a;支持代码格式化&#xff08;java、js等&#xff09; 另外支持js内方法跳转和js中ajax请求跳转到java代码里面 下载&#xff1a;Prettier SQL Params Setter 作用&#xff1a;将日志中mapper输出preparing和paramters处理成完整可直接执行…...

文心一言发布我怎么看?

文心一言发布会 有想看发布会视频的朋友,关注爱书不爱输的程序猿,私信找我拿 我只简短的回答两个问题: 1.文心一言能否为百度止颓&#xff1f; 首先,百度的颓势是由于多种因素导致的&#xff0c;包括市场竞争压力、业务发展战略的失误、管理体制的问题等。要想止颓&#xff0c;…...

100. 增减序列

给定一个长度为 n 的数列 a1,a2,…,an&#xff0c;每次可以选择一个区间 [l,r]&#xff0c;使下标在这个区间内的数都加一或者都减一。 求至少需要多少次操作才能使数列中的所有数都一样&#xff0c;并求出在保证最少次数的前提下&#xff0c;最终得到的数列可能有多少种。 输入…...

操作系统之进程的初步认识(1)

进程1. 进程的相关概念1.1 进程的定义1.2 进程的概念(1)1.3 进程的概念(2)2. 进程和程序的区别3. 进程管理:3.1 进程的结构体有哪些属性(1) Pid(操作系统里指进程识别号)(2) 内存指针(3) 文件描述符表4. 进程调度:(1) 并行(2) 并发5. 进程调度需要的属性(1) 进程状态(2) 进程优…...

【Java】你真的懂封装吗?一文读懂封装-----建议收藏

博主简介&#xff1a;努力学习的预备程序媛一枚~博主主页&#xff1a; 是瑶瑶子啦所属专栏: Java岛冒险记【从小白到大佬之路】 前言 write in the front: 如何理解封装&#xff1f; 试想&#xff1a;我们使用微波炉的时候&#xff0c;只用设置好时间&#xff0c;按下“开始”…...

使用MobaXterm ssh远程登录Ubuntu 20.04

使用MobaXterm 远程登录Ubuntu 20.04 首先需要到官网下载一个MobaXterm 准备一台Ubuntu20.04的虚拟机。使用ifconfig查看IP 我这里的虚拟机是新安装的&#xff0c;所以会提示命令不存在&#xff0c;只要按照提示输入&#xff1a; sudo apt install net-tools接着等待安装完成…...

蓝桥杯历年真题训练

2012年第四届全国电子专业人才设计与技能大赛“自动售水机”设计任务书1. 系统框图接下来我们将任务分块&#xff1a; 1. 按键控制单元 设定按键 S7 为出水控制按键&#xff0c;当 S7 按下后&#xff0c;售水机持续出水&#xff08;继电器接通&#xff0c;指示 灯 L10 点亮&…...

Spring事务报错: org.springframework.transaction.UnexpectedRollbackException

异常信息&#xff1a;支持当前事务&#xff0c;如果不存在则抛出异常。事务被回滚&#xff0c;因为它被标记为仅回滚 org.springframework.transaction.UnexpectedRollbackException: Transaction rolled back because it has been marked as rollback-onlyat org.springframe…...

Spring:IOC和AOP

Spring&#xff1a;IOC和AOP一. IOC(1) 引入(2) 定义(3) 作用(4) 实现(5) DI依赖注入二. AOP(1) 概念(2) Spring中的AOP(3) 入门案例0. 准备&#xff1a;1. 定义通知类和通知方法&#xff1b;2. 在通知类中描述和定义切入点 pointcut3. 用注释绑定切入点和通知方法4. 通知类&am…...

【笔记】效率之门——Python中的函数式编程技巧

文章目录Python函数式编程1. 数据2. 推导式3. 函数式编程3.1. Lambda函数3.2. python内置函数3.3. 高阶函数4. 函数式编程的应用Python函数式编程 我的AI Studio项目&#xff1a;【笔记】LearnDL第三课&#xff1a;Python高级编程——抽象与封装 - 飞桨AI Studio (baidu.com) p…...

Java【多线程基础2】 Thread类 及其常用方法

文章目录前言一、Thread类1, 构造方法2, 常用成员属性3, 常用成员方法3.1, start 启动线程3.2, interrupt 中断线程 (重点)3.2.1, 手动设置标记位3.2.2, 使用内置标记位3.3.3, interrupt 方法 的作用3.3 sleep 休眠线程3.4, jion 等待线程3.5 获取当前线程的引用总结前言 各位读…...

JVM调优实战及常量池详解

目录 阿里巴巴Arthas详解 Arthas使用场景 Arthas使用 GC日志详解 如何分析GC日志 CMS G1...

ChatGPT研究分析:GPT-4做了什么

前脚刚研究了一轮GPT3.5&#xff0c;OpenAI很快就升级了GPT-4&#xff0c;整体表现有进一步提升。追赶一下潮流&#xff0c;研究研究GPT-4干了啥。本文内容全部源于对OpenAI公开的技术报告的解读&#xff0c;通篇以PR效果为主&#xff0c;实际内容不多。主要强调的工作&#xf…...

我为什么要写博客,写博客的意义是什么??

曾经何时我也不知道&#xff0c;怎样才能变成我自己所羡慕的大佬&#xff01;&#xff01;在一次次的CSDN阅读的过程中&#xff0c;结实了许多志同道合的人&#xff01;&#xff01;包过凉哥&#xff0c;擦姐……大佬&#xff0c;但是&#xff0c;很遗憾&#xff0c;与这些人只…...

树莓派超全系列教程文档--(61)树莓派摄像头高级使用方法

树莓派摄像头高级使用方法 配置通过调谐文件来调整相机行为 使用多个摄像头安装 libcam 和 rpicam-apps依赖关系开发包 文章来源&#xff1a; http://raspberry.dns8844.cn/documentation 原文网址 配置 大多数用例自动工作&#xff0c;无需更改相机配置。但是&#xff0c;一…...

2.Vue编写一个app

1.src中重要的组成 1.1main.ts // 引入createApp用于创建应用 import { createApp } from "vue"; // 引用App根组件 import App from ./App.vue;createApp(App).mount(#app)1.2 App.vue 其中要写三种标签 <template> <!--html--> </template>…...

3-11单元格区域边界定位(End属性)学习笔记

返回一个Range 对象&#xff0c;只读。该对象代表包含源区域的区域上端下端左端右端的最后一个单元格。等同于按键 End 向上键(End(xlUp))、End向下键(End(xlDown))、End向左键(End(xlToLeft)End向右键(End(xlToRight)) 注意&#xff1a;它移动的位置必须是相连的有内容的单元格…...

无人机侦测与反制技术的进展与应用

国家电网无人机侦测与反制技术的进展与应用 引言 随着无人机&#xff08;无人驾驶飞行器&#xff0c;UAV&#xff09;技术的快速发展&#xff0c;其在商业、娱乐和军事领域的广泛应用带来了新的安全挑战。特别是对于关键基础设施如电力系统&#xff0c;无人机的“黑飞”&…...

MySQL 主从同步异常处理

阅读原文&#xff1a;https://www.xiaozaoshu.top/articles/mysql-m-s-update-pk MySQL 做双主&#xff0c;遇到的这个错误&#xff1a; Could not execute Update_rows event on table ... Error_code: 1032是 MySQL 主从复制时的经典错误之一&#xff0c;通常表示&#xff…...

ubuntu22.04 安装docker 和docker-compose

首先你要确保没有docker环境或者使用命令删掉docker sudo apt-get remove docker docker-engine docker.io containerd runc安装docker 更新软件环境 sudo apt update sudo apt upgrade下载docker依赖和GPG 密钥 # 依赖 apt-get install ca-certificates curl gnupg lsb-rel…...

【实施指南】Android客户端HTTPS双向认证实施指南

&#x1f510; 一、所需准备材料 证书文件&#xff08;6类核心文件&#xff09; 类型 格式 作用 Android端要求 CA根证书 .crt/.pem 验证服务器/客户端证书合法性 需预置到Android信任库 服务器证书 .crt 服务器身份证明 客户端需持有以验证服务器 客户端证书 .crt 客户端身份…...

Java数组Arrays操作全攻略

Arrays类的概述 Java中的Arrays类位于java.util包中&#xff0c;提供了一系列静态方法用于操作数组&#xff08;如排序、搜索、填充、比较等&#xff09;。这些方法适用于基本类型数组和对象数组。 常用成员方法及代码示例 排序&#xff08;sort&#xff09; 对数组进行升序…...

Mac flutter环境搭建

一、下载flutter sdk 制作 Android 应用 | Flutter 中文文档 - Flutter 中文开发者网站 - Flutter 1、查看mac电脑处理器选择sdk 2、解压 unzip ~/Downloads/flutter_macos_arm64_3.32.2-stable.zip \ -d ~/development/ 3、添加环境变量 命令行打开配置环境变量文件 ope…...

boost::filesystem::path文件路径使用详解和示例

boost::filesystem::path 是 Boost 库中用于跨平台操作文件路径的类&#xff0c;封装了路径的拼接、分割、提取、判断等常用功能。下面是对它的使用详解&#xff0c;包括常用接口与完整示例。 1. 引入头文件与命名空间 #include <boost/filesystem.hpp> namespace fs b…...