当前位置: 首页 > news >正文

llama 2 改进之 RMSNorm

RMSNorm
在这里插入图片描述

论文:https://openreview.net/pdf?id=SygkZ3MTJE
Github:https://github.com/bzhangGo/rmsnorm?tab=readme-ov-file
在这里插入图片描述
论文假设LayerNorm中的重新居中不变性是可有可无的,并提出了均方根层归一化(RMSNorm)。RMSNorm根据均方根(RMS)将一层神经元的总和输入正则化,得到模型重新缩放不变性特性和隐式学习率适应能力

LayerNorm 公式

深度学习当中,没有线性激活函数的预测公式

a i = ∑ j = 1 m w i j x j , y i = f ( a i + b i ) , \begin{aligned}a_i=\sum_{j=1}^mw_{ij}x_j,\quad y_i=f\left(a_i+b_i\right),\end{aligned} ai=j=1mwijxj,yi=f(ai+bi),

通过激活函数后,其中,随着前一层的更新,层的输入分布会发生变化。这可能会对参数梯度的稳定性产生负面影响,延迟模型收敛。为了减少这种转变,LayerNorm 对求和的输入进行归一化,以固定它们的均值和方差,如下所示:

a ˉ i = a i − μ σ g i , y i = f ( a ˉ i + b i ) , \begin{aligned}\bar{a}_i=\frac{a_i-\mu}{\sigma}g_i,\quad y_i=f\left(\bar{a}_i+b_i\right),\end{aligned} aˉi=σaiμgi,yi=f(aˉi+bi),

其中 a ˉ i \bar{a}_i aˉi是向量 a ˉ ∈ R n \bar{a}\in\mathbb{R}^n aˉRn的第 i i i个值,作为 α i \alpha_i αi的归一化替代值用于层激活。 g ∈ R n \mathbf{g}\in\mathbb{R}^n gRn是增益参数,用于重新调整标准化求和输入的大小,一开始设置为 1。 μ \mu μ σ 2 \sigma^2 σ2 分别是根据原始求和输入估计的均值和方差统计量。

μ = 1 n ∑ i = 1 n a i , σ = 1 n ∑ i = 1 n ( a i − μ ) 2 . \begin{aligned}\mu=\frac{1}{n}\sum_{i=1}^na_i,\quad\sigma=\sqrt{\frac{1}{n}\sum_{i=1}^n(a_i-\mu)^2}.\end{aligned} μ=n1i=1nai,σ=n1i=1n(aiμ)2 .

在本文中,假设重新缩放不变性是LayerNorm成功的原因,而不是重新定中心不变性。我们提出了RMSNorm,它只关注重新缩放不变性,并简单地根据均方根(RMS)统计对求和输入进行正则化:
a ˉ i = a i RMS ( a ) g i , where RMS ( a ) = 1 n ∑ i = 1 n a i 2 . \begin{aligned}\bar{a}_i=\frac{a_i}{\text{RMS}(\mathbf{a})}g_i,\quad\text{where RMS}(\mathbf{a})=\sqrt{\frac{1}{n}\sum_{i=1}^na_i^2}.\end{aligned} aˉi=RMS(a)aigi,where RMS(a)=n1i=1nai2 .

python实现

# root mean square layer normalization
def rln(x, s):_eps = 1e-5output = x / tensor.sqrt((x * x).mean(1)[:,None] + _eps)output = s[None, :] * outputreturn output# layer normalization
def ln(x, b, s):_eps = 1e-5output = (x - x.mean(1)[:,None]) / tensor.sqrt((x.var(1)[:,None] + _eps))output = s[None, :] * output + b[None,:]return output

使用pytorch来写RMSNorm的函数

import torch
import torch.nn as nnclass RMSNorm(nn.Module):def __init__(self, d, p=-1., eps=1e-8, bias=False):"""Root Mean Square Layer Normalization:param d: model size:param p: partial RMSNorm, valid value [0, 1], default -1.0 (disabled):param eps:  epsilon value, default 1e-8:param bias: whether use bias term for RMSNorm, disabled bydefault because RMSNorm doesn't enforce re-centering invariance."""super(RMSNorm, self).__init__()self.eps = epsself.d = dself.p = pself.bias = biasself.scale = nn.Parameter(torch.ones(d))self.register_parameter("scale", self.scale)if self.bias:self.offset = nn.Parameter(torch.zeros(d))self.register_parameter("offset", self.offset)def forward(self, x):if self.p < 0. or self.p > 1.:norm_x = x.norm(2, dim=-1, keepdim=True)d_x = self.delse:partial_size = int(self.d * self.p)partial_x, _ = torch.split(x, [partial_size, self.d - partial_size], dim=-1)norm_x = partial_x.norm(2, dim=-1, keepdim=True)d_x = partial_sizerms_x = norm_x * d_x ** (-1. / 2)x_normed = x / (rms_x + self.eps)if self.bias:return self.scale * x_normed + self.offsetreturn self.scale * x_normed

相关文章:

llama 2 改进之 RMSNorm

RMSNorm 论文&#xff1a;https://openreview.net/pdf?idSygkZ3MTJE Github&#xff1a;https://github.com/bzhangGo/rmsnorm?tabreadme-ov-file 论文假设LayerNorm中的重新居中不变性是可有可无的&#xff0c;并提出了均方根层归一化(RMSNorm)。RMSNorm根据均方根(RMS)将…...

Matlab【光伏预测】基于雪融优化算法SAO优化高斯过程回归GPR实现光伏多输入单输出预测附代码

% 光伏预测 - 基于SAO优化的GPR % 数据准备 % 假设有多个输入特征 X1, X2, …, Xn 和一个目标变量 Y % 假设数据已经存储在 X 和 Y 中&#xff0c;每个变量为矩阵&#xff0c;每行表示一个样本&#xff0c;每列表示一个特征 % 参数设置 numFeatures size(X, 2); % 输入特征的…...

ES6 模块

ES6 模块学习记录 ES6&#xff08;ECMAScript 2015&#xff09;模块是JavaScript官方的标准模块系统。它允许开发者以模块化的方式编写代码&#xff0c;模块可以在不同的文件之间进行组织和重用。 基本特征 默认导出&#xff08;Default Exports&#xff09;&#xff1a;每个…...

谷粒商城-全文检索-ElasticSearch

1.简介 一个分布式的开源搜索和分析引擎,可以 秒 级的从海量数据中检索 主要功能:做数据的检索和分析(MySQL专攻于数据的持久化存储与管理CRUD达到百万以上的数据MSQL就会很慢,海量数据的检索和分析还是要用ElasticSearch) 用途:我们电商项目里的所有的检索功能都是由Elasti…...

Java的LinkedHashMap 源码解析

LinkedHashMap 是 Java 中的一种有序 Map&#xff0c;它扩展了 HashMap&#xff0c;提供了有序的元素存储方式。在 LinkedHashMap 中&#xff0c;元素的有序性可以按照插入顺序或访问顺序来维护&#xff0c;而这个有序性是通过维护一个双向链表来实现的&#xff0c;这也是实现 …...

Linux系统及常用指令

目录 1、什么是Linux系统 2、为什么要用Linux系统 3、Linux系统的种类 4、如何安装Linux系统 5、常见的适配器种类 6、学习第一个Linux指令 7、安装ssh客户端软件 8、Linux系统的目录结构 9、Linux的常用命令 9.1 目录切换命令 9.2 查看目录下的内容 9.3 查看当前…...

Mac Electron 应用如何进行签名(signature)和公证(notarization)?

最近很多客户反映&#xff0c;从官网下载的Mac Electron应用打不开&#xff0c;直接报病毒&#xff0c;类似于这种&#xff1a; 这是因为在MacOS 10.14.5之后&#xff0c;如果应用没有在苹果官方平台进行公证notarization(我们可以理解为安装包需要审核&#xff0c;来判断是否存…...

【C++ | 抽象类】纯虚函数 和 抽象基类,为什么需要抽象基类

&#x1f601;博客主页&#x1f601;&#xff1a;&#x1f680;https://blog.csdn.net/wkd_007&#x1f680; &#x1f911;博客内容&#x1f911;&#xff1a;&#x1f36d;嵌入式开发、Linux、C语言、C、数据结构、音视频&#x1f36d; &#x1f923;本文内容&#x1f923;&a…...

DP(7) | 打家劫舍① | Java | LeetCode 198, 213, 337 做题总结(未完)

打家劫舍问题 来源于代码随想录&#xff1a;https://programmercarl.com/0198.%E6%89%93%E5%AE%B6%E5%8A%AB%E8%88%8D.html#%E6%80%9D%E8%B7%AF ① 确定dp数组&#xff08;dp table&#xff09;以及下标的含义 dp[i]&#xff1a;考虑下标i&#xff08;包括i&#xff09;以内的房…...

人工智能算法工程师(中级)课程17-模型的量化与部署之剪枝技巧与代码详解

大家好&#xff0c;我是微学AI&#xff0c;今天给大家介绍一下人工智能算法工程师(中级)课程17-模型的量化与部署之剪枝技巧与代码详解。模型剪枝是深度学习领域中一项关键的技术&#xff0c;旨在减少神经网络中的冗余权重&#xff0c;从而降低计算成本和内存占用&#xff0c;同…...

JavaScript 实例:掌握编程技巧

JavaScript 实例:掌握编程技巧 JavaScript 是一种广泛使用的编程语言,它为网页添加交互性,是现代网络开发的重要组成部分。本文将通过一系列实例,帮助您更好地理解和掌握 JavaScript 的核心概念和编程技巧。 基础实例:变量和数据类型 首先,让我们从最基础的开始。Java…...

自己做小项目时,配置的Maven需要用阿里云私服加速Jar包的下载

在我的IDEA中&#xff0c;maven配置在了这个地址&#xff0c;然后我需要去这个地址下找到settings.xml的maven配置文件来配置以下的阿里云私服地址来加速jar包的下载&#xff01;【不然就是下N年很慢&#xff01;】...

Linux笔记之time命令测量命令的执行时间

Linux笔记之time命令测量命令的执行时间 在Linux中&#xff0c;time命令用于测量命令的执行时间。这对于分析和优化脚本或程序的性能非常有用。time命令会显示三个主要时间指标&#xff1a; real: 从命令开始到结束的实际时间&#xff08;也称为挂钟时间&#xff09;。user: …...

《基于 CDC、Spark Streaming、Kafka 实现患者指标采集》

&#x1f4e2; 大家好&#xff0c;我是 【战神刘玉栋】&#xff0c;有10多年的研发经验&#xff0c;致力于前后端技术栈的知识沉淀和传播。 &#x1f497; &#x1f33b; CSDN入驻不久&#xff0c;希望大家多多支持&#xff0c;后续会继续提升文章质量&#xff0c;绝不滥竽充数…...

重要的单元测试

&#x1f47d;System.out.println(“&#x1f44b;&#x1f3fc;嗨&#xff0c;大家好&#xff0c;我是代码不会敲的小符&#xff0c;目前工作于上海某电商服务公司…”); &#x1f4da;System.out.println(“&#x1f388;如果文章中有错误的地方&#xff0c;恳请大家指正&…...

什么是diff算法?

Diff算法&#xff0c;全称为Difference算法&#xff0c;是一种用于比较和查找两个对象&#xff08;如文本、源代码、数据结构或任何形式的字符串&#xff09;之间差异的算法。它在多个领域有着广泛的应用&#xff0c;包括但不限于前端开发、版本控制系统、协同编辑工具等。以下…...

BUUCTF逆向wp [MRCTF2020]Transform

第一步 查壳。该题为64位。 第二步 进入主函数&#xff0c;跟进dword_40F040,它应该与关键字符串有关 分析一下&#xff1a; 初始化和输入 sub_402230(argc, argv, envp); 这行可能是一个初始化函数&#xff0c;用于设置程序环境或处理命令行参数。具体功能不明&#xff0c…...

前端下载文件流 出现乱码 解决方案

1. 后端返回文件格式不是 utf-8 解决方案&#xff1a;后端加 2. 若添加 utf-8 后依旧乱码 请求配置中添加 responseType: arraybuffer, export function downMode() {return http.request({url: baseUrl downTemplate,method: get,responseType: arraybuffer,}); }下载 con…...

Linux/Windows 系统分区

1. Windows 系统 1.1 系统分区 系统分区也叫做磁盘分区&#xff0c;即分盘&#xff1b; 举个例子&#xff0c;好比家里有一个大柜子&#xff0c;把衣服&#xff0c;鞋子&#xff0c;袜子都放在里面&#xff0c;由于没有隔断&#xff0c;找的时候非常麻烦&#xff0c;找是能找…...

C/C++ xml库

文章目录 一、介绍1.1 xml 介绍1.2 xml 标准1.3 xml 教程1.4 xml 构成 二、C/C xml 库选型2.1 选型范围2.2 RapidXML2.3 tinyxml22.4 pugixml2.5 libxml 五、性能比较5.1 C xml 相关的操作有哪些5.2 rapidxml、Pugixml、TinyXML2 文件读取性能比较 六、其他问题6.1 version和 e…...

UniVue@v1.5.0版本发布:里程碑版本

前言 以后使用UniVue都推荐使用1.5.0以后的版本&#xff0c;这个版本之后&#xff0c;更新的速度将会放缓。 希望这个框架能够切实的帮助大家更好的开发游戏&#xff0c;做出一款好游戏&#xff01;本开源项目采用的开源协议为MIT协议&#xff0c;完全开源化&#xff0c;以后也…...

在 Windows 上开发.NET MAUI 应用_2.生成你的第一个应用

先决条件 Visual Studio 2022 17.8 或更高版本&#xff0c;并安装了 .NET Multi-platform App UI 工作负载。 可参考上一篇文章&#xff1a;http://t.csdnimg.cn/n38Yy 创建应用 1.启动 Visual Studio 2022。 在开始窗口中&#xff0c;单击“创建新项目”以创建新项目&#…...

配置SMTP服务器的要点是什么?有哪些限制?

配置SMTP服务器安全性如何保障&#xff1f;如何高效配置服务器&#xff1f; SMTP作为电子邮件发送的核心协议&#xff0c;其配置对于确保邮件的成功传递和安全至关重要。AokSend将详细介绍配置SMTP服务器的关键要点&#xff0c;帮助读者建立一个高效、安全的邮件发送系统。 配…...

图形渲染基础-Unity渲染管线介绍

Unity中的渲染管线渲染场景主要分为三个阶段 剔除&#xff08;Culling&#xff09; 剔除摄像机不可见对象&#xff08;视锥体剔除Frustum Culling&#xff09;和被遮挡对象&#xff08;遮挡剔除Occlusion Culling&#xff09;。 渲染&#xff08;Rendering&#xff09; 将可见…...

junit mockito service

service类单元测试可以有两种方式 1、使用Autowired启用上下文的Bean走业务逻辑&#xff0c;适用于debug调试 2、使用InjectMocks不启用上下文依懒的Bean采用打桩的形式 打桩注意&#xff1a;service通常业务逻辑复杂&#xff0c;Bean的依懒层次可能很深&#xff0c;初用者常…...

k8s学习——升级后的k8s使用私有harbor仓库

升级后的k8s使用了第三方的容器管理器&#xff0c;安装了nerdctl工具来替代docker进行镜像管理。但是使用docker build打包并上传至harbor仓库的镜像&#xff0c;在部署过程中始终拉不下来&#xff0c;报错证书错误。通过journalctl -xe |grep kubelet 或 journalctl -xe |grep…...

Blender4.2版本正式上线,新版本的5个主要功能!

​Blender刚刚推出了备受瞩目的 Blender 4.2 版本&#xff0c;这款软件专为那些在视觉特效、动画制作、游戏开发和可视化设计领域工作的艺术家们量身打造。作为最新的长期稳定更新&#xff0c;Blender 4.2 不仅稳定可靠&#xff0c;还引入了备受期待的“Eevee Next”实时渲染引…...

【python基础】基本数据类型

文章目录 一. Python基本数据类型1. 整数1.1. python的四种进制1.2. 数中的下划线 2. 浮点数3. 复数4. 布尔型5. 运算符5.1. 算术运算符5.2. 比较运算符5.3. 逻辑运算符5.4 运算符优先级 6. 常量 二. 注释三. Python之禅 一. Python基本数据类型 1. 整数 无长度限制&#xff1…...

应用层——HTTP

像我们电脑和手机使用的应用软件就是在应用层写的&#xff0c;当我们的数据需要传输的时候换将数据传递到传输层。 应用层专门给用户提供应用功能&#xff0c;比如HTTP,FTP… 我们程序员写的一个个解决我们实际的问题都在应用层&#xff0c;我们今天来聊一聊HTTP。 协议 协议…...

剧本杀小程序搭建,为商家带来新的收益方向

近几年&#xff0c;剧本杀游戏成为了游戏市场的一匹黑马&#xff0c;受到了不少年轻玩家的欢迎。随着信息技术的快速发展&#xff0c;传统的剧本杀门店已经无法满足游戏玩家日益增长的需求&#xff0c;因此&#xff0c;剧本杀市场开始向线上模式发展&#xff0c;实现行业数字化…...

商城建网站/大连百度seo

经过几次与python的接触&#xff0c;大略的谈一下我对Python的初步认知。 一基础知识 对于Python的基础知识&#xff1a;即Python的特点{解释性脚本语言&#xff1b;面向对象的语言&#xff1b;动态语言 变量类型不固定&#xff1b;默认编码 utf-8} 再是他的基本规则分为跨行&a…...

手表网站代码/2022最近的新闻大事10条

▣ 作者 六爷 | 互联网营销官(ID&#xff1a;HLWCMO)随着“二次元”文化破圈&#xff0c;目前已发展为拥有4亿人群的庞大规模&#xff0c;主要涉及动画、漫画、游戏、小说等多个领域。二次元的受众群体正是当下占据消费主力军的年轻人&#xff0c;因此&#xff0c;品牌为了迎合…...

黑龙江省住房和建设厅网站/群发软件

我想说&#xff1a; 2017年入CSDN来&#xff0c;从2019年开始坚持写一些自己的平时学习心得、技术要点、前端技术、脱坑指南等文章 谢谢各位的支持&#xff0c;共前行 截至到专家认证当天已经书写 截至2021年 3月11日 14:39...

做家教去什么网站/杭州网站优化搜索

建议142&#xff1a;总是提供有意义的命名 除非有特殊原型&#xff0c;否则永远不要为自己的代码提供无意义的命名。 害怕需要过长的命名才能提供足够的意义&#xff1f;不要怕&#xff0c;其实我们更介意的是在代码的时候出现一个iTemp。 int i 这样的命名只能出现在循环中&am…...

wordpress主题 设定/自己如何优化网站排名

在新建类的时候&#xff0c;是可以直接表面你要新建的这个类是干啥的&#xff0c;即&#xff0c;给这个新建的类加上注释。我这详细记录示范下&#xff0c;在idea里面是怎么设置和操作的。1.idea创建类的时候&#xff0c;自动给类加注释的设置示范。这地方&#xff0c;可以设置…...

东莞网站域名注册/seo和sem是什么意思啊

cocos2d-x引擎在内部实现了一个庞大的主循环&#xff0c;每帧之间更新界面&#xff0c;如果耗时的操作放到了主线程中&#xff0c;游戏的界面就会卡&#xff0c;这是不能容忍的&#xff0c;游戏最基本的条件就是流畅性&#xff0c;这就是为什么游戏开发选择C的原因。另外现在双…...