当前位置: 首页 > news >正文

llama 2 改进之 RMSNorm

RMSNorm
在这里插入图片描述

论文:https://openreview.net/pdf?id=SygkZ3MTJE
Github:https://github.com/bzhangGo/rmsnorm?tab=readme-ov-file
在这里插入图片描述
论文假设LayerNorm中的重新居中不变性是可有可无的,并提出了均方根层归一化(RMSNorm)。RMSNorm根据均方根(RMS)将一层神经元的总和输入正则化,得到模型重新缩放不变性特性和隐式学习率适应能力

LayerNorm 公式

深度学习当中,没有线性激活函数的预测公式

a i = ∑ j = 1 m w i j x j , y i = f ( a i + b i ) , \begin{aligned}a_i=\sum_{j=1}^mw_{ij}x_j,\quad y_i=f\left(a_i+b_i\right),\end{aligned} ai=j=1mwijxj,yi=f(ai+bi),

通过激活函数后,其中,随着前一层的更新,层的输入分布会发生变化。这可能会对参数梯度的稳定性产生负面影响,延迟模型收敛。为了减少这种转变,LayerNorm 对求和的输入进行归一化,以固定它们的均值和方差,如下所示:

a ˉ i = a i − μ σ g i , y i = f ( a ˉ i + b i ) , \begin{aligned}\bar{a}_i=\frac{a_i-\mu}{\sigma}g_i,\quad y_i=f\left(\bar{a}_i+b_i\right),\end{aligned} aˉi=σaiμgi,yi=f(aˉi+bi),

其中 a ˉ i \bar{a}_i aˉi是向量 a ˉ ∈ R n \bar{a}\in\mathbb{R}^n aˉRn的第 i i i个值,作为 α i \alpha_i αi的归一化替代值用于层激活。 g ∈ R n \mathbf{g}\in\mathbb{R}^n gRn是增益参数,用于重新调整标准化求和输入的大小,一开始设置为 1。 μ \mu μ σ 2 \sigma^2 σ2 分别是根据原始求和输入估计的均值和方差统计量。

μ = 1 n ∑ i = 1 n a i , σ = 1 n ∑ i = 1 n ( a i − μ ) 2 . \begin{aligned}\mu=\frac{1}{n}\sum_{i=1}^na_i,\quad\sigma=\sqrt{\frac{1}{n}\sum_{i=1}^n(a_i-\mu)^2}.\end{aligned} μ=n1i=1nai,σ=n1i=1n(aiμ)2 .

在本文中,假设重新缩放不变性是LayerNorm成功的原因,而不是重新定中心不变性。我们提出了RMSNorm,它只关注重新缩放不变性,并简单地根据均方根(RMS)统计对求和输入进行正则化:
a ˉ i = a i RMS ( a ) g i , where RMS ( a ) = 1 n ∑ i = 1 n a i 2 . \begin{aligned}\bar{a}_i=\frac{a_i}{\text{RMS}(\mathbf{a})}g_i,\quad\text{where RMS}(\mathbf{a})=\sqrt{\frac{1}{n}\sum_{i=1}^na_i^2}.\end{aligned} aˉi=RMS(a)aigi,where RMS(a)=n1i=1nai2 .

python实现

# root mean square layer normalization
def rln(x, s):_eps = 1e-5output = x / tensor.sqrt((x * x).mean(1)[:,None] + _eps)output = s[None, :] * outputreturn output# layer normalization
def ln(x, b, s):_eps = 1e-5output = (x - x.mean(1)[:,None]) / tensor.sqrt((x.var(1)[:,None] + _eps))output = s[None, :] * output + b[None,:]return output

使用pytorch来写RMSNorm的函数

import torch
import torch.nn as nnclass RMSNorm(nn.Module):def __init__(self, d, p=-1., eps=1e-8, bias=False):"""Root Mean Square Layer Normalization:param d: model size:param p: partial RMSNorm, valid value [0, 1], default -1.0 (disabled):param eps:  epsilon value, default 1e-8:param bias: whether use bias term for RMSNorm, disabled bydefault because RMSNorm doesn't enforce re-centering invariance."""super(RMSNorm, self).__init__()self.eps = epsself.d = dself.p = pself.bias = biasself.scale = nn.Parameter(torch.ones(d))self.register_parameter("scale", self.scale)if self.bias:self.offset = nn.Parameter(torch.zeros(d))self.register_parameter("offset", self.offset)def forward(self, x):if self.p < 0. or self.p > 1.:norm_x = x.norm(2, dim=-1, keepdim=True)d_x = self.delse:partial_size = int(self.d * self.p)partial_x, _ = torch.split(x, [partial_size, self.d - partial_size], dim=-1)norm_x = partial_x.norm(2, dim=-1, keepdim=True)d_x = partial_sizerms_x = norm_x * d_x ** (-1. / 2)x_normed = x / (rms_x + self.eps)if self.bias:return self.scale * x_normed + self.offsetreturn self.scale * x_normed

相关文章:

llama 2 改进之 RMSNorm

RMSNorm 论文&#xff1a;https://openreview.net/pdf?idSygkZ3MTJE Github&#xff1a;https://github.com/bzhangGo/rmsnorm?tabreadme-ov-file 论文假设LayerNorm中的重新居中不变性是可有可无的&#xff0c;并提出了均方根层归一化(RMSNorm)。RMSNorm根据均方根(RMS)将…...

Matlab【光伏预测】基于雪融优化算法SAO优化高斯过程回归GPR实现光伏多输入单输出预测附代码

% 光伏预测 - 基于SAO优化的GPR % 数据准备 % 假设有多个输入特征 X1, X2, …, Xn 和一个目标变量 Y % 假设数据已经存储在 X 和 Y 中&#xff0c;每个变量为矩阵&#xff0c;每行表示一个样本&#xff0c;每列表示一个特征 % 参数设置 numFeatures size(X, 2); % 输入特征的…...

ES6 模块

ES6 模块学习记录 ES6&#xff08;ECMAScript 2015&#xff09;模块是JavaScript官方的标准模块系统。它允许开发者以模块化的方式编写代码&#xff0c;模块可以在不同的文件之间进行组织和重用。 基本特征 默认导出&#xff08;Default Exports&#xff09;&#xff1a;每个…...

谷粒商城-全文检索-ElasticSearch

1.简介 一个分布式的开源搜索和分析引擎,可以 秒 级的从海量数据中检索 主要功能:做数据的检索和分析(MySQL专攻于数据的持久化存储与管理CRUD达到百万以上的数据MSQL就会很慢,海量数据的检索和分析还是要用ElasticSearch) 用途:我们电商项目里的所有的检索功能都是由Elasti…...

Java的LinkedHashMap 源码解析

LinkedHashMap 是 Java 中的一种有序 Map&#xff0c;它扩展了 HashMap&#xff0c;提供了有序的元素存储方式。在 LinkedHashMap 中&#xff0c;元素的有序性可以按照插入顺序或访问顺序来维护&#xff0c;而这个有序性是通过维护一个双向链表来实现的&#xff0c;这也是实现 …...

Linux系统及常用指令

目录 1、什么是Linux系统 2、为什么要用Linux系统 3、Linux系统的种类 4、如何安装Linux系统 5、常见的适配器种类 6、学习第一个Linux指令 7、安装ssh客户端软件 8、Linux系统的目录结构 9、Linux的常用命令 9.1 目录切换命令 9.2 查看目录下的内容 9.3 查看当前…...

Mac Electron 应用如何进行签名(signature)和公证(notarization)?

最近很多客户反映&#xff0c;从官网下载的Mac Electron应用打不开&#xff0c;直接报病毒&#xff0c;类似于这种&#xff1a; 这是因为在MacOS 10.14.5之后&#xff0c;如果应用没有在苹果官方平台进行公证notarization(我们可以理解为安装包需要审核&#xff0c;来判断是否存…...

【C++ | 抽象类】纯虚函数 和 抽象基类,为什么需要抽象基类

&#x1f601;博客主页&#x1f601;&#xff1a;&#x1f680;https://blog.csdn.net/wkd_007&#x1f680; &#x1f911;博客内容&#x1f911;&#xff1a;&#x1f36d;嵌入式开发、Linux、C语言、C、数据结构、音视频&#x1f36d; &#x1f923;本文内容&#x1f923;&a…...

DP(7) | 打家劫舍① | Java | LeetCode 198, 213, 337 做题总结(未完)

打家劫舍问题 来源于代码随想录&#xff1a;https://programmercarl.com/0198.%E6%89%93%E5%AE%B6%E5%8A%AB%E8%88%8D.html#%E6%80%9D%E8%B7%AF ① 确定dp数组&#xff08;dp table&#xff09;以及下标的含义 dp[i]&#xff1a;考虑下标i&#xff08;包括i&#xff09;以内的房…...

人工智能算法工程师(中级)课程17-模型的量化与部署之剪枝技巧与代码详解

大家好&#xff0c;我是微学AI&#xff0c;今天给大家介绍一下人工智能算法工程师(中级)课程17-模型的量化与部署之剪枝技巧与代码详解。模型剪枝是深度学习领域中一项关键的技术&#xff0c;旨在减少神经网络中的冗余权重&#xff0c;从而降低计算成本和内存占用&#xff0c;同…...

JavaScript 实例:掌握编程技巧

JavaScript 实例:掌握编程技巧 JavaScript 是一种广泛使用的编程语言,它为网页添加交互性,是现代网络开发的重要组成部分。本文将通过一系列实例,帮助您更好地理解和掌握 JavaScript 的核心概念和编程技巧。 基础实例:变量和数据类型 首先,让我们从最基础的开始。Java…...

自己做小项目时,配置的Maven需要用阿里云私服加速Jar包的下载

在我的IDEA中&#xff0c;maven配置在了这个地址&#xff0c;然后我需要去这个地址下找到settings.xml的maven配置文件来配置以下的阿里云私服地址来加速jar包的下载&#xff01;【不然就是下N年很慢&#xff01;】...

Linux笔记之time命令测量命令的执行时间

Linux笔记之time命令测量命令的执行时间 在Linux中&#xff0c;time命令用于测量命令的执行时间。这对于分析和优化脚本或程序的性能非常有用。time命令会显示三个主要时间指标&#xff1a; real: 从命令开始到结束的实际时间&#xff08;也称为挂钟时间&#xff09;。user: …...

《基于 CDC、Spark Streaming、Kafka 实现患者指标采集》

&#x1f4e2; 大家好&#xff0c;我是 【战神刘玉栋】&#xff0c;有10多年的研发经验&#xff0c;致力于前后端技术栈的知识沉淀和传播。 &#x1f497; &#x1f33b; CSDN入驻不久&#xff0c;希望大家多多支持&#xff0c;后续会继续提升文章质量&#xff0c;绝不滥竽充数…...

重要的单元测试

&#x1f47d;System.out.println(“&#x1f44b;&#x1f3fc;嗨&#xff0c;大家好&#xff0c;我是代码不会敲的小符&#xff0c;目前工作于上海某电商服务公司…”); &#x1f4da;System.out.println(“&#x1f388;如果文章中有错误的地方&#xff0c;恳请大家指正&…...

什么是diff算法?

Diff算法&#xff0c;全称为Difference算法&#xff0c;是一种用于比较和查找两个对象&#xff08;如文本、源代码、数据结构或任何形式的字符串&#xff09;之间差异的算法。它在多个领域有着广泛的应用&#xff0c;包括但不限于前端开发、版本控制系统、协同编辑工具等。以下…...

BUUCTF逆向wp [MRCTF2020]Transform

第一步 查壳。该题为64位。 第二步 进入主函数&#xff0c;跟进dword_40F040,它应该与关键字符串有关 分析一下&#xff1a; 初始化和输入 sub_402230(argc, argv, envp); 这行可能是一个初始化函数&#xff0c;用于设置程序环境或处理命令行参数。具体功能不明&#xff0c…...

前端下载文件流 出现乱码 解决方案

1. 后端返回文件格式不是 utf-8 解决方案&#xff1a;后端加 2. 若添加 utf-8 后依旧乱码 请求配置中添加 responseType: arraybuffer, export function downMode() {return http.request({url: baseUrl downTemplate,method: get,responseType: arraybuffer,}); }下载 con…...

Linux/Windows 系统分区

1. Windows 系统 1.1 系统分区 系统分区也叫做磁盘分区&#xff0c;即分盘&#xff1b; 举个例子&#xff0c;好比家里有一个大柜子&#xff0c;把衣服&#xff0c;鞋子&#xff0c;袜子都放在里面&#xff0c;由于没有隔断&#xff0c;找的时候非常麻烦&#xff0c;找是能找…...

C/C++ xml库

文章目录 一、介绍1.1 xml 介绍1.2 xml 标准1.3 xml 教程1.4 xml 构成 二、C/C xml 库选型2.1 选型范围2.2 RapidXML2.3 tinyxml22.4 pugixml2.5 libxml 五、性能比较5.1 C xml 相关的操作有哪些5.2 rapidxml、Pugixml、TinyXML2 文件读取性能比较 六、其他问题6.1 version和 e…...

国防科技大学计算机基础课程笔记02信息编码

1.机内码和国标码 国标码就是我们非常熟悉的这个GB2312,但是因为都是16进制&#xff0c;因此这个了16进制的数据既可以翻译成为这个机器码&#xff0c;也可以翻译成为这个国标码&#xff0c;所以这个时候很容易会出现这个歧义的情况&#xff1b; 因此&#xff0c;我们的这个国…...

【入坑系列】TiDB 强制索引在不同库下不生效问题

文章目录 背景SQL 优化情况线上SQL运行情况分析怀疑1:执行计划绑定问题?尝试:SHOW WARNINGS 查看警告探索 TiDB 的 USE_INDEX 写法Hint 不生效问题排查解决参考背景 项目中使用 TiDB 数据库,并对 SQL 进行优化了,添加了强制索引。 UAT 环境已经生效,但 PROD 环境强制索…...

8k长序列建模,蛋白质语言模型Prot42仅利用目标蛋白序列即可生成高亲和力结合剂

蛋白质结合剂&#xff08;如抗体、抑制肽&#xff09;在疾病诊断、成像分析及靶向药物递送等关键场景中发挥着不可替代的作用。传统上&#xff0c;高特异性蛋白质结合剂的开发高度依赖噬菌体展示、定向进化等实验技术&#xff0c;但这类方法普遍面临资源消耗巨大、研发周期冗长…...

Linux简单的操作

ls ls 查看当前目录 ll 查看详细内容 ls -a 查看所有的内容 ls --help 查看方法文档 pwd pwd 查看当前路径 cd cd 转路径 cd .. 转上一级路径 cd 名 转换路径 …...

将对透视变换后的图像使用Otsu进行阈值化,来分离黑色和白色像素。这句话中的Otsu是什么意思?

Otsu 是一种自动阈值化方法&#xff0c;用于将图像分割为前景和背景。它通过最小化图像的类内方差或等价地最大化类间方差来选择最佳阈值。这种方法特别适用于图像的二值化处理&#xff0c;能够自动确定一个阈值&#xff0c;将图像中的像素分为黑色和白色两类。 Otsu 方法的原…...

C++ 基础特性深度解析

目录 引言 一、命名空间&#xff08;namespace&#xff09; C 中的命名空间​ 与 C 语言的对比​ 二、缺省参数​ C 中的缺省参数​ 与 C 语言的对比​ 三、引用&#xff08;reference&#xff09;​ C 中的引用​ 与 C 语言的对比​ 四、inline&#xff08;内联函数…...

【android bluetooth 框架分析 04】【bt-framework 层详解 1】【BluetoothProperties介绍】

1. BluetoothProperties介绍 libsysprop/srcs/android/sysprop/BluetoothProperties.sysprop BluetoothProperties.sysprop 是 Android AOSP 中的一种 系统属性定义文件&#xff08;System Property Definition File&#xff09;&#xff0c;用于声明和管理 Bluetooth 模块相…...

HTML前端开发:JavaScript 常用事件详解

作为前端开发的核心&#xff0c;JavaScript 事件是用户与网页交互的基础。以下是常见事件的详细说明和用法示例&#xff1a; 1. onclick - 点击事件 当元素被单击时触发&#xff08;左键点击&#xff09; button.onclick function() {alert("按钮被点击了&#xff01;&…...

【碎碎念】宝可梦 Mesh GO : 基于MESH网络的口袋妖怪 宝可梦GO游戏自组网系统

目录 游戏说明《宝可梦 Mesh GO》 —— 局域宝可梦探索Pokmon GO 类游戏核心理念应用场景Mesh 特性 宝可梦玩法融合设计游戏构想要素1. 地图探索&#xff08;基于物理空间 广播范围&#xff09;2. 野生宝可梦生成与广播3. 对战系统4. 道具与通信5. 延伸玩法 安全性设计 技术选…...

laravel8+vue3.0+element-plus搭建方法

创建 laravel8 项目 composer create-project --prefer-dist laravel/laravel laravel8 8.* 安装 laravel/ui composer require laravel/ui 修改 package.json 文件 "devDependencies": {"vue/compiler-sfc": "^3.0.7","axios": …...