【计算机视觉前沿研究 热点 顶会】CVPR 2024中与域适应、分布外目标检测相关的论文
测试时间线性分布外检测
分布外( OOD)检测旨在通过在输入样本显著偏离训练分布(分布中)时触发警报来解决神经网络的过度置信度预测,这表明输出可能不可靠。当前的 OOD 检测方法探索各种线索来识别 OOD 数据,例如在特征空间 logit 空间梯度空间或原始图像空间中发现不规则模式。令人惊讶的是,我们在几个数据集上观察到当前 OOD 检测算法产生的 OOD 分数与网络特征之间的线性趋势。我们从理论和经验上进行了深入的研究,以分析和理解 OOD 检测中这种线性趋势的含义。本文提出了一种鲁棒测试时间线性方法(RTL),当我们有一批数据来执行 OOD 检测时,可以像“免费午餐”一样利用这种线性趋势。
CORES:基于卷积响应的分布外检测分数
深度神经网络( DNN)在遇到分布外( OOD)样本时往往表现出过度自信,这在现实世界的应用中带来了重大挑战。利用卷积核上的响应对于分布内( ID)样本通常比 OOD 样本更明显的观察结果,本文提出了基于卷积核响应的分数(CORES)来利用这些差异进行 OOD 检测。
房间里的一只吵闹的大象:您的分布外检测器对标记噪音是否稳健?
检测不熟悉或意外图像的能力对于计算机视觉系统的安全部署至关重要。在分类的背景下,检测模型训练域之外的图像的任务称为分布外(OOD)检测。虽然人们对开发后自组织 OOD 检测方法的研究兴趣越来越大,但对于这些方法在底层分类器没有在干净、精心挑选的数据集上进行训练时如何执行的讨论相对较少。在这项工作中,我们在(更现实的)场景中更仔细地研究了 20 种最先进的 OOD 检测方法,其中用于训练底层分类器的标签是不可靠的(例如,众包标签或网络抓取的标签)。
用于小样本分布外检测的类似 ID 的提示学习
分布外(OOD)检测方法通常利用辅助离群点来训练识别 OOD 样本的模型,特别是从辅助离群点数据集中发现具有挑战性的离群点来改进 OOD 检测。然而,在有效区分与分布内(ID)数据非常相似的最具挑战性的 OOD 样本(即类似 ID 的样本)方面,它们可能仍然面临限制。为此,我们提出了一种新颖的 OOD 检测框架,该框架利用 ID 样本的邻近空间中的 CLIP 来发现类似 ID 的离群点,从而帮助识别这
些最具挑战性的 OOD 样本。
YolOOD:利用目标检测概念进行多标签分发外检测
由于分布外(OOD)检测在已部署系统中的重要性,近年来引起了机器学习研究界的广泛关注。以往的研究大多集中在多类分类任务中 OOD 样本的检测。然而,在多标签分类任务中的 OOD 检测,一个更常见的真实世界用例,仍然是一个未被探索的领域。在本研究中,我们提出了一种利用目标检测领域的概念来进行多标签分类任务中的 OOD 检测的方法 YolOOD。
用于分布外检测的辨别性驱动通道选择
分布外(OOD)检测对于在开放世界环境中部署机器学习模型至关重要。基于激活的方法是 OOD 检测中的关键方法,致力于减轻对 OOD 数据的过度自信预测。这些技术纠正了异常激活,提高了分布内(ID)数据和 OOD 数据之间的可区分性。然而,它们默认假设每个通道都是 OOD 检测和纠正每个通道中的异常激活所必需的。经验证据表明,不同的信道在 OOD 检测中存在着显着的差异,丢弃部分通道可以大大提高 OOD 检测的性能。
改进单域广义目标检测:关注多元化和对齐
在这项工作中,我们解决了用于目标检测的域泛化问题,特别是在只有一个源域可用的情况下。我们提出了一种有效的方法,包括两个关键步骤:源域的多样化和基于类预测置信度和局部化的检测对齐。
通过样本感知模型选择增强 OOD 检测的能力
在这项工作中,我们提出了一种新的视角来检测分布外(OOD)的样本,并提出了一种样本感知模型选择算法来提高 OOD 检测的有效性。我们的算法为每个测试输入确定模型动物园中的哪些预先训练的模型能够将测试输入识别为 OOD 样本。如果模型动物园中不存在这样的模型,则测试输入被归类为分布内(ID)样本。理论证明,当模型动物园中有足够数量的不同预训练模型时,我们的方法保持了 ID 样本的真实正确率,并以高概率准确识别 OOD 样本。
用于单源域广义对象检测的无偏Faster R-CNN
目标检测的单源域泛化(SDG)是一项具有挑战性的基本任务,因为不可见域的分布偏差会显著降低算法的性能。然而,现有的方法试图提取领域不变的特征,而忽略了有偏差的数据会导致网络学习无因果且泛化能力差的有偏差的特征。为此,我们提出了一种用于泛化特征学习的无偏Faster R-CNN(UFR)。
通过零镜头昼夜域自适应增强对象检测
在弱光场景中检测对象是一个持续的挑战,因为在光照良好的数据上训练的检测器由于能见度低而在弱光数据上表现出显著的性能下降。以前的方法通过使用真实的微光图像数据集探索图像增强或目标检测技术来缓解这一问题。然而,由于采集和标注微光图像的固有困难,这一进展受到了阻碍。为了应对这一挑战,我们提出了通过零镜头昼夜域自适应来提高微光目标检测的能力,其目的是将探测器从强光场景推广到微光场景,而不需要真正的微光数据。
CVPR 2024论文合集PDF版
由于判断依据的差异,这篇博客可能无法全面地囊括您需要的论文。
下面的资料中收录并翻译了CVPR 2024所有论文的题目与摘要,它为您扫清了语言障碍,让您能够充分地利用碎片时间、随时随地跟踪计算机视觉与模式识别领域最前沿的研究。
CVPR 2024 收录所有论文题目和题目的合集:https://mbd.pub/o/bread/ZpeYmplt
CVPR 2024 收录所有论文题目的合集:https://mbd.pub/o/bread/ZpeYmphy
相关文章:
【计算机视觉前沿研究 热点 顶会】CVPR 2024中与域适应、分布外目标检测相关的论文
测试时间线性分布外检测 分布外( OOD)检测旨在通过在输入样本显著偏离训练分布(分布中)时触发警报来解决神经网络的过度置信度预测,这表明输出可能不可靠。当前的 OOD 检测方法探索各种线索来识别 OOD 数据࿰…...
首次由国产8K摄像机服务巴黎奥运会8K公用信号
法国巴黎时间16日上午,中央广播电视总台“中国红”8K转播车穿越大半个地球,抵达法兰西体育场,顺利完成与奥林匹克转播公司(OBS)的交接。 (1)“中国红”8K转播车 作为适合户外露天项目的“移动制作域”,“…...
idea怎么配置gradle多个版本
1.背景 gradle版本很多,而且很多时候版本是不兼容的,我们希望拉取下来的代码就包含已经配置好的版本,而不是去配置本机的gradle版本..... 意思就是要实现项目A可以用6.X版本 项目B可以使用7.X版本 项目C可以用9.X版本..... 2.配置方式 步骤一:项目根路径下保留一个文件夹…...
SpringCloudAlibaba-Seata2.0.0与Nacos2.2.1
一、下载 ## 下载seata wget https://github.com/apache/incubator-seata/releases/download/v2.0.0/seata-server-2.0.0.tar.gz## 解压 tar zxvf seata-server-2.0.0.tar.gz二、执行sql文件 ## 取出sql文件执行 cd /seata/script/server/db/mysql ## 找个mysql数据库执行三、…...
【编程语言】C++和C的异同点
文章目录 相同点不同点cin和scanf()结构体struct指针:NULL、nullptr、void* 有一段时间没有发博客了,从笔记里摘录一些发两篇。 相同点 C有很多从C继承过来的东西,因此C书(《C Primer》、《C Primer Plus》)中有一些基础的东西讲的并没有C书…...
【日常记录】【插件】excel.js导出的时候给单元格设置下拉选择、数据校验等
文章目录 1. 代码基本结构2. 导出的excel 某单元格的值设置为下拉选择3. 如何把下拉选择项设置为动态4. 单元格设置校验、提示5. 在WPS上的设置 1. 代码基本结构 <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8"><…...
分布式 I/O 系统Modbus TCP 耦合器BL200
BL200 耦合器是一个数据采集和控制系统,基于强大的 32 位微处理器设计,采用 Linux 操作系统,可以快速接入现场 PLC、SCADA 以及 ERP 系统, 内置逻辑控制、边缘计算应用,支持标准 Modbus TCP 服务器通讯,以太…...
人工智能导论-机器学习
机器学习概述 概述 本章主要介绍的机器学习的概念、发展历程、发展趋势、相关应用,着重拓展机监督学习和无监督学习的相关知识。 重点:机器学习的定义和应用; 难点:机器学习算法及分类。 机器学习 - 重要性 MachineLeaning出…...
计算机网络——网络层(路由选择协议、路由器工作原理、IP多播、虚拟专用网和网络地址转换)
目录 路由选择协议 因特网的路由选择协议特点 路由信息协议RIP RIP衡量目的网络距离 RIP选择路由器的方式 RIP具有以下三个重要特点 RIP的基本工作流程 RIP的距离向量算法 编辑 编辑 RIP存在的问题——“坏消息传播得慢” RIP的封装 开放最短路径优先协议OSPF…...
对接企业微信API自建应用配置企业可信IP
前言 为了实现系统调用团队会议功能,组织发起企业微信会议,于是需要和企业微信做API对接。对接过程很难受,文档不清晰、没有SDK、没有技术支持甚至文档报文和实际接口报文都不匹配,只能说企业微信的API是从业以来见过的最难用的AP…...
Windows右键新建Markdown文件类型配置 | Typora | VSCode
🙋大家好!我是毛毛张! 🌈个人首页: 神马都会亿点点的毛毛张 今天毛毛张分享的是如何在右键的新建菜单中添加新建MarkdownFile文件,这是毛毛张分享的关于Typora软件的相关知识的第三期 文章目录 1.前言🏝…...
PyTorch构建一个肺部CT图像分类模型来分辨肺癌
当你有5万个标注的肺部CT DICOM图像数据,并且希望使用PyTorch构建一个肺部CT图像分类模型来分辨肺癌,以下是详细的步骤和示例代码: 数据准备 首先,确保你的数据集被正确分为训练集、验证集和测试集,并且每个图像都有相…...
MySQL简介及数据库
mysql简介 mysql是一个轻量级关系型数据库管理系统,具有体积小,速度快,开源的优点 sql是一种结构化查询语言(Structured Query Language),专门用来管理和处理关系型数据库的标准化编程语言,mysql实现了SQL标准…...
服务器基础1
服务器基础复习01 1.环境部署 系统:华为欧拉系统 网络简单配置nmtui 因为华为欧拉系统密码需要复杂度 所以我们可以进入后更改密码 echo 123 | passwd --stdin root也可以 echo "root:123" | chpasswd2.关闭防火墙,禁用SElinux 首先先关…...
<数据集>光伏板缺陷检测数据集<目标检测>
数据集格式:VOCYOLO格式 图片数量:2400张 标注数量(xml文件个数):2400 标注数量(txt文件个数):2400 标注类别数:4 标注类别名称:[Crack,Grid,Spot] 序号类别名称图片数框数1Crack8688922Grid8248843S…...
leetcode 513. 找树左下角的值
给定一个二叉树的 根节点 root,请找出该二叉树的 最底层 最左边 节点的值。 假设二叉树中至少有一个节点。 示例 1: 输入: root [2,1,3] 输出: 1示例 2: 输入: [1,2,3,4,null,5,6,null,null,7] 输出: 7提示: 二叉树的节点个数的范围是 [1,104]-231 < Node.val &…...
C++并发编程实战学习笔记
一、C的并发: 多进程并发: 将应用程序分为多个独立的进程,它们在同一时刻运行,就像同 时进行网页浏览和文字处理一样。独立的进程可以通过进程间常规的通信渠道传递讯息(信号、套接字、文件、管道等等)。不过,这种进程…...
【雷丰阳-谷粒商城 】【分布式高级篇-微服务架构篇】【25】【分布式事务】
持续学习&持续更新中… 守破离 【雷丰阳-谷粒商城 】【分布式高级篇-微服务架构篇】【25】【分布式事务】 本地事务事务的基本性质事务的隔离级别(下面四个越往下,隔离级 别越高,并发能力越差)事务的传播行为(是否…...
HC05主从一体蓝牙模块的裸机使用——单片机<-->蓝牙模块
HC-05是一种常用的蓝牙模块,具有低功耗、低成本、易于使用的特点。它可以实现与其他蓝牙设备(如手机、电脑等)进行无线通信。HC-05蓝牙模块具有串口通信接口,可以通过串口与主控制器(如Arduino、Raspberry Pi等&#x…...
“点点通“餐饮点餐小程序-计算机毕业设计源码11264
"点点通"餐饮点餐小程序 XXX专业XX级XX班:XXX 指导教师:XXX 摘要 随着中国经济的飞速增长,消费者的智能化水平不断提高,许多智能手机和相关的软件正在得到更多的关注和支持。其中,微信的餐饮点餐小程序更…...
C#知识|账号管理系统-账号信息管理界面[1]:账号分类选择框、Panel面板设置
哈喽,你好啊,我是雷工! 前一节实现了多条件查询后端代码的编写, 接下来继续学习账号信息管理界面的功能编写,本节主要记录账号分类选择框和Panel的设置, 以下为学习笔记。 01 功能说明 本节实现以下功能: ①:账号分类选择框只能选择,无法自由输入; ②:账号分类框默认…...
Meta即将推出4000亿的Llama 3 超级AI模型,或将改写大语言模型竞争格局!|TodayAI
2024年4月,科技巨头Meta发布了其最新的AI大型语言模型——Llama 3,该模型基于一个至少比前代产品Llama 2大七倍的数据集,展现出前所未有的性能。在最初发布时,Llama 3提供了8B和70B两种参数规模的版本,并迅速超越了Goo…...
数据挖掘新技能:Python爬虫编程指南
Python爬虫的优势 Python之所以成为数据爬取的首选语言,主要得益于其丰富的库和框架支持。以下是一些常用的库: Requests:用于发送HTTP请求,简单易用,是Python爬虫的基础库。BeautifulSoup:用于解析HTML文…...
object-C 解答算法:移动零(leetCode-283)
移动零(leetCode-283) 题目如下图:(也可以到leetCode上看完整题目,题号283) 解题思路: 本质就是把非0的元素往前移动,接下来要考虑的是怎么移动,每次移动多少? 这里需要用到双指针,i 记录每次遍历的元素值, j 记录“非0元素值”需要移动到的位置; 当所有“非0元素值”都移…...
靖江美食元宇宙
关于“靖江美食元宇宙”的具体信息,搜索结果中并未提供直接相关的详细描述。不过,搜索结果显示了有关元宇宙在食品领域的应用和探索,例如食品元宇宙的概念、不同品牌尝试进入元宇宙市场的例子等。这些信息表明,元宇宙技术正在被用…...
模板方法设计模式
模板方法设计模式: 模板方法设计模式:解决方法中存在重复代码的问题。 模板方法设计模式的写法: 1、定义一个抽象类 2、在里面定义2个方法 一个是模板方法:把相同代码放里面去 一个是抽象方法:具体实现交给子类完成 建议使用…...
对象存储解决方案:高性能分布式对象存储系统MinIO
文章目录 引言I 自动化数据管理界面1.1 图形用户界面:GUI1.2 命令行界面:MinIO CLI1.3 应用程序编程接口:MinIO APIII 部署集成2.1 建议使用RPM或DEB安装方式2.2 创建环境变量文件2.3 启动MinIO服务2.4 将NGINX用作反向代理,配置负载。III 基础概念3.1 为什么是对象存储?3…...
2024 年需要考虑的 16 个知识库趋势和统计数据
自2017年以来,千禧一代已成为全球人口最多的一代。如果您的企业还没有准备好应对这一变化带来的挑战,那么是时候加快这一进程了。 毫不奇怪,千禧一代痴迷于智能手机和技术。他们具有流动性,期望与他们互动的品牌能够即时高效。 …...
微信小程序-实现跳转链接并拼接参数(URL拼接路径参数)
第一种常用拼接方法:普通传值的拼接 //普通传值的拼接checkRouteBinttap: function (e) {wx.navigateTo({url: ../checkRoute/checkRoute?classId this.data.classInfo.classId "&taskId" this.data.classInfo.taskId,})}第二种:拼接…...
【代码随想录|第十一章 图论part01 | 797.所有可能的路径 】
代码随想录|第十一章 图论part01 | 图论理论基础,797.所有可能的路径,广搜理论基础 一、图论理论基础1.图的基本概念2.图的构造1)邻接矩阵2)邻接表 3.图的遍历方式4.深度优先搜索理论基础 二、797.所有可能的路径1.核心代码2.问题…...
帝国cms做网站/百度seo标题优化软件
密码算法和协议:四大类 对称加密:用于加密任意大小的数据块数据内容,加密方和解密方使用的是同一个密码 公钥加密:(非对称加密)加密和解密使用的是不同的密码,有公钥和私钥,密…...
资源站建站技术/搜狗收录批量查询
看错误是类没有找到,但是代码中确实有这个类,编译没错,执行的时候报这个异常。 我同事的机器没事,我的有问题。 想了一下差别,就是.classPath文件不一致。 后来进 project - properties-java build path - Order and E…...
福州建网站 做网页/2345纯净版推广包
已同步到个人博客,欢迎访问。 总结 最常用的判断方法是Object.prototype.slice.call(),其他判断的方法都有着各种问题: Array.isArray判断数组,需要ES6的支持typeof有各种特殊情况instanceof对于字面量不适用,并且在…...
微网站建设开发/上海seo搜索优化
这是一个iPhone Menu JSON文件的示例,您可能会看到该文件用于存储菜单配置设置以在移动设备上设置网站。 使用简单的JSON格式,可以轻松地在移动和Web组件之间共享它。 另外: 请参阅更多JSON示例。 {"menu": {"header": &…...
自己做下载类网站/搜索引擎关键词优化方案
Linux Cat命令及使用详解时间Red Hat Linux 有一个工具程序,它能够帮助你保留简短列表,将这些列表收集起来,甚至向你透漏一点你的系统信息。这个工具叫做Linux Cat,它是concatenate [k?nk?tineit](连锁)的简写,意思是…...
那个网站做稻草交易/搜狗收录提交入口
交换机stack 1。注意交换机型号,ios版本必须都保持一致。 2。连接好堆叠线 首先更改交换机的序号,更改后更改交换机的优先级 注意:新的交换机默认堆叠序列号(stack member number),堆叠优先级(stack member priority value)都为1。 如果新加一交换机需要做,改变当面堆…...