当前位置: 首页 > news >正文

PyTorch张量数值计算

文章目录

  • 1、张量基本运算
  • 2、阿达玛积
  • 3、点积运算
  • 4、指定运算设备⭐
  • 5、解决在GPU运行PyTorch的问题

🍃作者介绍:双非本科大三网络工程专业在读,阿里云专家博主,专注于Java领域学习,擅长web应用开发、数据结构和算法,初步涉猎人工智能和前端开发。
🦅个人主页:@逐梦苍穹
📕所属专栏:人工智能
🌻gitee地址:xzl的人工智能代码仓库
✈ 您的一键三连,是我创作的最大动力🌹

1、张量基本运算

PyTorch 计算的数据都是以张量形式存在
可以在 CPU 中运算, 也可以在 GPU 中运算.
基本运算中,包括 add、sub、mul、div、neg 等函数,
以及这些函数的带下划线的版本 add_、sub_、mul_、div_、neg_,
其中带下划线的版本为修改原数据。

操作类型函数示例代码代码解释
创建张量torch.randintdata = torch.randint(0, 10, [2, 3])生成一个2x3的随机整数张量,范围在0到9之间。
不修改原数据addnew_data = data.add(10)将每个元素加上10,生成一个新张量。
修改原数据add_data.add_(10)将每个元素加上10,直接修改原数据。
减法subdata.sub(100)将每个元素减去100,生成一个新张量。
乘法muldata.mul(100)将每个元素乘以100,生成一个新张量。
除法divdata.div(100)将每个元素除以100,生成一个新张量。
取反negdata.neg()将每个元素取反,生成一个新张量。

代码:

# -*- coding: utf-8 -*-
# @Author: CSDN@逐梦苍穹
# @Time: 2024/7/16 1:25# 导入PyTorch库
import torch# 定义测试函数
def test():# 生成一个2x3的随机整数张量,范围在0到9之间data = torch.randint(0, 10, [2, 3])print(data)print('-' * 50)# 1. 不修改原数据# 使用add函数将每个元素加上10,生成一个新张量new_data = data.add(10)  # 等价 new_data = data + 10print(new_data)print('-' * 50)# 2. 直接修改原数据# 注意: 带下划线的函数为修改原数据本身# 使用add_函数将每个元素加上10,直接修改原数据data.add_(10)  # 等价 data += 10print(data)# 3. 其他函数# 使用sub函数将每个元素减去100,生成一个新张量print(data.sub(100))# 使用mul函数将每个元素乘以100,生成一个新张量print(data.mul(100))# 使用div函数将每个元素除以100,生成一个新张量print(data.div(100))# 使用neg函数将每个元素取反,生成一个新张量print(data.neg())

效果:
image.png

2、阿达玛积

阿达玛积(Hadamard Product),又称为元素积(element-wise product),是指两个相同尺寸的矩阵对应元素相乘得到的新矩阵。

阿达玛积与矩阵乘法不同,矩阵乘法是行与列的点积,而阿达玛积只是简单的元素相乘。

# -*- coding: utf-8 -*-
# @Author: CSDN@逐梦苍穹
# @Time: 2024/7/16 2:25
import torchdef test():data1 = torch.tensor([[1, 2], [3, 4]])data2 = torch.tensor([[5, 6], [7, 8]])# 第一种方式data = torch.mul(data1, data2)print(data)print('-' * 50)# 第二种方式data = data1 * data2print(data)print('-' * 50)if __name__ == '__main__':test()

image.png

3、点积运算

点积(Dot Product)是向量计算中的一种基本运算,它将两个向量对应元素相乘并求和。
点积在机器学习和深度学习中广泛应用于各种计算,如向量相似性、神经网络中的加权和计算等。

image.png
点积运算要求第一个矩阵 shape: (n, m),
第二个矩阵 shape: (m, p),
两个矩阵点积运算 shape 为: (n, p)。

  1. 运算符 @ 用于进行两个矩阵的点乘运算
  2. torch.mm 用于进行两个矩阵点乘运算, 要求输入的矩阵为2维
  3. torch.bmm 用于批量进行矩阵点乘运算, 要求输入的矩阵为3维
  4. torch.matmul 对进行点乘运算的两矩阵形状没有限定.
    1. 对于输入都是二维的张量相当于 mm 运算.
    2. 对于输入都是三维的张量相当于 bmm 运算
    3. 对数输入的 shape 不同的张量, 对应的最后几个维度必须符合矩阵运算规则

三维矩阵:
image.png

torch.randn(3, 4, 5)参数个数不限,从左到右依次是维度。

# -*- coding: utf-8 -*-
# @Author: CSDN@逐梦苍穹
# @Time: 2024/7/16 2:35
import torch# 1. 点积运算
def test01():# 创建两个张量,data1 为 3x2 矩阵,data2 为 2x2 矩阵data1 = torch.tensor([[1, 2], [3, 4], [5, 6]])data2 = torch.tensor([[5, 6], [7, 8]])# 第一种方式:使用 @ 运算符进行矩阵乘法(点积运算)data = data1 @ data2print(data)print('-' * 50)# 第二种方式:使用 torch.mm 函数进行矩阵乘法data = torch.mm(data1, data2)print(data)print('-' * 50)# 第三种方式:使用 torch.matmul 函数进行矩阵乘法data = torch.matmul(data1, data2)print(data)print('-' * 50)# 2. torch.mm 和 torch.matmul 的区别
def test02():# matmul 可以处理不同维度的张量# 第一个张量的形状为 (3, 4, 5)# 第二个张量的形状为 (5, 4)# torch.mm 只能处理二维矩阵的乘法,而 matmul 可以处理高维度张量的乘法print(torch.randn(3, 4, 5))print(torch.matmul(torch.randn(3, 4, 5), torch.randn(5, 4)).shape)# 反转张量的顺序,第二个张量的形状为 (3, 4, 5)# 第一个张量的形状为 (5, 4)# 结果形状仍然符合矩阵乘法规则print(torch.matmul(torch.randn(5, 4), torch.randn(3, 4, 5)).shape)# 3. torch.bmm 函数的用法
def test03():# 批量点积运算# 第一个维度为 batch_size# data1 的形状为 (3, 4, 5)# data2 的形状为 (3, 5, 8)# torch.bmm 可以处理批量的矩阵乘法data1 = torch.randn(3, 4, 5)data2 = torch.randn(3, 5, 8)# 进行批量矩阵乘法运算,结果形状为 (3, 4, 8)data = torch.bmm(data1, data2)print(data.shape)

image.png
image.png

4、指定运算设备⭐

PyTorch 默认会将张量创建在 CPU 控制的内存中, 即: 默认的运算设备为 CPU。
我们也可以将张量创建在 GPU 上, 能够利用对于矩阵计算的优势加快模型训练。
将张量移动到 GPU 上有两种方法:

  1. 使用 cuda 方法
  2. 直接在 GPU 上创建张量
  3. 使用 to 方法指定设备
指定设备的方式示例代码代码解释
使用 cuda 方法python data = torch.tensor([10, 20, 30]) data = data.cuda() 使用 cuda() 方法将张量从 CPU 移动到 GPU。
在创建张量时指定设备python data = torch.tensor([10, 20, 30], device='cuda:0') 在创建张量时,通过 device 参数直接指定设备为 GPU。
使用 to 方法python data = torch.tensor([10, 20, 30]) data = data.to('cuda:0') 使用 to() 方法将张量从 CPU 移动到 GPU。
使用 cpu 方法python data = data.cpu() 使用 cpu() 方法将张量从 GPU 移动到 CPU。
使用 torch.devicepython device = torch.device("cuda" if torch.cuda.is_available() else "cpu") tensor = torch.randn(3, 4, 5, device=device) 使用 torch.device 动态选择设备,并在创建张量时指定设备。
# -*- coding: utf-8 -*-
# @Author: CSDN@逐梦苍穹
# @Time: 2024/7/16 2:58
import torch
import torchvision# 1. 使用 cuda 方法
def test01():data = torch.tensor([10, 20, 30])print('存储设备:', data.device)# 如果安装的不是 gpu 版本的 PyTorch# 或电脑本身没有 NVIDIA 卡的计算环境# 下面代码可能会报错data = data.cuda()print('存储设备:', data.device)# 使用 cpu 函数将张量移动到 cpu 上data = data.cpu()print('存储设备:', data.device)# 输出结果:# 存储设备: cpu# 存储设备: cuda:0# 存储设备: cpu# 2. 直接将张量创建在 GPU 上
def test02():data = torch.tensor([10, 20, 30], device='cuda:0')print('存储设备:', data.device)# 使用 cpu 函数将张量移动到 cpu 上data = data.cpu()print('存储设备:', data.device)# 输出结果:# 存储设备: cuda:0# 存储设备: cpu# 3. 使用 to 方法
def test03():data = torch.tensor([10, 20, 30])print('存储设备:', data.device)data = data.to('cuda:0')print('存储设备:', data.device)# 输出结果:# 存储设备: cpu# 存储设备: cuda:0# 4. 存储在不同设备的张量不能运算
def test04():data1 = torch.tensor([10, 20, 30], device='cuda:0')data2 = torch.tensor([10, 20, 30])print(data1.device, data2.device)# RuntimeError: Expected all tensors to be on the same device,# but found at least two devices, cuda:0 and cpu!data = data1 + data2print(data)def test05():# 检查CUDA是否可用,并选择设备device = torch.device("cuda" if torch.cuda.is_available() else "cpu")# device = "cpu"print("Using device:", device)# 构建一个形状为 (3, 4, 5) 的随机张量,并指定设备tensor = torch.randn(3, 4, 5, device=device)print("Tensor:", tensor)print("Shape:", tensor.shape)print("Device:", tensor.device)data = torch.randn(5, 4, device=device)print(torch.matmul(tensor, data))def test06():print("PyTorch版本: ", torch.__version__)  # 打印PyTorch版本print("torchvision版本 ", torchvision.__version__)  # 打印torchvision版本print("CUDA是否可用: ", torch.cuda.is_available())  # 检查CUDA是否可用if __name__ == '__main__':test04()

5、解决在GPU运行PyTorch的问题

请参考我的这篇文章:https://xzl-tech.blog.csdn.net/article/details/140478985

相关文章:

PyTorch张量数值计算

文章目录 1、张量基本运算2、阿达玛积3、点积运算4、指定运算设备⭐5、解决在GPU运行PyTorch的问题 🍃作者介绍:双非本科大三网络工程专业在读,阿里云专家博主,专注于Java领域学习,擅长web应用开发、数据结构和算法&am…...

Dockerfile相关命令

Dockerfile Dockerfile 是一个用来构建Docker镜像的文本文件,包含了一系列构建镜像所需的指令和参数。 指令详解 Dockerfile 指令说明FROM指定基础镜像,用于后续的指令构建,必须为第一个命令MAINTAINER指定Dockerfile的作者/维护者。&…...

【AI教程-吴恩达讲解Prompts】第1篇 - 课程简介

文章目录 简介Prompt学习相关资源 两类大模型原则与技巧 简介 欢迎来到面向开发者的提示工程部分,本部分内容基于吴恩达老师的《Prompt Engineering for Developer》课程进行编写。《Prompt Engineering for Developer》课程是由吴恩达老师与 OpenAI 技术团队成员 I…...

Leetcode - 周赛406

目录 一,3216. 交换后字典序最小的字符串 二,3217. 从链表中移除在数组中存在的节点 三,3218. 切蛋糕的最小总开销 I 四,3219. 切蛋糕的最小总开销 II 一,3216. 交换后字典序最小的字符串 本题要求交换一次相邻字符…...

【JavaScript 算法】拓扑排序:有向无环图的应用

🔥 个人主页:空白诗 文章目录 一、算法原理二、算法实现方法一:Kahn算法方法二:深度优先搜索(DFS)注释说明: 三、应用场景四、总结 拓扑排序(Topological Sorting)是一种…...

Fastgpt本地或服务器私有化部署常见问题

一、错误排查方式 遇到问题先按下面方式排查。 docker ps -a 查看所有容器运行状态,检查是否全部 running,如有异常,尝试docker logs 容器名查看对应日志。容器都运行正常的,docker logs 容器名 查看报错日志带有requestId的,都是 OneAPI 提示错误,大部分都是因为模型接…...

基于深度学习的股票预测

基于深度学习的股票预测是一项复杂且具有挑战性的任务,涉及金融数据的分析和预测。其目的是利用深度学习模型来预测股票价格的走势,从而帮助投资者做出更为准确的投资决策。以下是对这一领域的系统介绍: 1. 任务和目标 股票预测的主要任务和…...

UNiapp 微信小程序渐变不生效

开始用的一直是这个,调试一直没问题,但是重新启动就没生效,经查询这个不适合小程序使用:不适合没生效 background-image:linear-gradient(to right, #33f38d8a,#6dd5ed00); 正确使用下面这个: 生效,适合…...

FinClip 率先入驻 AWS Marketplace,加速全球市场布局

近日,凡泰极客旗下的小程序数字管理平台 FinClip 已成功上线亚马逊云科技(AWS)Marketplace。未来,FinClip 将主要服务于海外市场的开放银行、超级钱包、财富管理、社交电商、智慧城市解决方案等领域。 在全球市场的多样性需求推动…...

ChatGPT对话:Windows如何将Python训练模型转换为TensorFlow.js格式

【编者按】编者目前正在做手机上的人工智能软件,第一次做这种工作,从一些基本工作开始与ChatGPT交流。对初学者应该有帮助。 一天后修改文章补充内容: 解决TensorFlow 2.X与TensorFlow Decision Forests版本冲突问题: 在使用tens…...

封装网络请求 鸿蒙APP HarmonyOS ArkTS

一、效果展示 通过在页面直接调用 userLogin(params) 方法,获取登录令牌 二、申请网络权限 访问网络时候首先需要申请网络权限,需要修改 src/main 目录下的 module.json5 文件,加入 requestPermissions 属性,详见官方文档 【声明权…...

2024年度上半年中国汽车保值率报告

来源:中国汽车流通协会&精真估 近期历史回顾: 2024上半年房地产企业数智化转型报告.pdf 2024国产院线电影路演数据洞察报告.pdf 空间数据智能大模型研究-2024年中国空间数据智能战略发展白皮书.pdf 2024年全球资产管理报告 2024年中型律师事务所的法…...

Go语言之内存分配

文章收录在网站:http://hardyfish.top/ 文章收录在网站:http://hardyfish.top/ 文章收录在网站:http://hardyfish.top/ 文章收录在网站:http://hardyfish.top/ Go 语言程序所管理的虚拟内存空间会被分为两部分:堆内…...

北京交通大学《深度学习》专业课,实验3卷积、空洞卷积、残差神经网络实验

一、实验要求 1. 二维卷积实验(平台课与专业课要求相同) ⚫ 手写二维卷积的实现,并在至少一个数据集上进行实验,从训练时间、预测精 度、Loss变化等角度分析实验结果(最好使用图表展示) ⚫ 使用torch.nn…...

WPF中UI元素继承关系

在 WPF(Windows Presentation Foundation)框架中,UI 元素是基于一个层次化的类结构构建的,这个结构以 FrameworkElement 类为核心,大多数 UI 元素都是 FrameworkElement 或其派生类的子类。FrameworkElement 类本身又继…...

qml 实现一个listview

主要通过qml实现listvie功能&#xff0c;主要包括右键菜单&#xff0c;滚动条&#xff0c;拖动改变内容等&#xff0c;c 与 qml之间的变量和函数的调用。 main.cpp #include <QQuickItem> #include <QQmlContext> #include "testlistmodel.h" int main…...

【Leetcode】十六、深度优先搜索 宽度优先搜索 :二叉树的层序遍历

文章目录 1、深度优先搜索算法2、宽度优先搜索算法3、leetcode102&#xff1a;二叉树的层序遍历4、leetcode107&#xff1a;二叉树的层序遍历II5、leetcode938&#xff1a;二叉搜索树的范围和 1、深度优先搜索算法 深度优先搜索&#xff0c;即DFS&#xff0c;从root节点开始&a…...

Ruby教程

Ruby是一种动态的、面向对象的、解释型的脚本语言&#xff0c;以其简洁和易读性而闻名。Ruby的设计哲学强调程序员的生产力和代码的可读性&#xff0c;同时也融合了功能性和面向对象编程的特性。 以下是一个基础的Ruby教程&#xff0c;涵盖了一些基本概念和语法&#xff1a; …...

react + pro-components + ts完成单文件上传和批量上传

上传部分使用的是antd中的Upload组件,具体如下: GradingFilingReportUpload方法是后端已经做好文件流,前端只需要调用接口即可 单文件上传 <Uploadkey{upload_${record.id}}showUploadList{false}accept".xlsx"maxCount{1}customRequest{({ file }) > {const …...

暑假第一周——ZARA仿写

iOS学习 前言首页&#xff1a;无限轮播图商城&#xff1a;分类我的&#xff1a;自定义cell总结 前言 结束了UI的基础学习&#xff0c;现在综合运用开始写第一个demo&#xff0c;在实践中提升。 首页&#xff1a;无限轮播图 先给出效果&#xff1a; 无限轮播图&#xff0c;顾…...

github.com/antchfx/jsonquery基本使用

要在 GitHub 上使用 antchfx/jsonquery 库来查找 JSON 文档中的元素&#xff0c;首先需要了解这个库的基本用法。jsonquery 是一个用于查询 JSON 数据的 Go 语言库&#xff0c;允许使用 XPath 表达式来查找和选择 JSON 数据中的元素。 以下是一些基本步骤和示例&#xff0c;演…...

【python虚拟环境管理】【mac m3】使用poetry管理python项目

文章目录 一. 为什么选择poetry二. poetry相关操作1. 创建并激活环境2. 依赖包管理2.1. 安装项目依赖1.2. 管理不同开发环境的依赖1.3. 依赖维护1.4. 项目相关 Poetry是Python中用于依赖管理和打包的工具。它允许您声明项目所依赖的库&#xff0c;并将为您管理&#xff08;安装…...

《JavaSE》---16.<抽象类接口Object类>

目录 前言 一、抽象类 1.1什么是抽象类 1.2抽象类代码实现 1.3 抽象类特点 1.4抽象类的作用 二、接口 2.1什么是接口 2.2接口的代码书写 2.3 接口使用 2.4 接口特点 2.5 实现多个接口 快捷键&#xff08;ctrl i &#xff09;&#xff1a; 2.6接口的好处 2.7 接…...

简单修改,让UE4/5着色器编译速度变快

简单修改&#xff0c;让UE4/5着色器编译速度变快 目录 简单修改&#xff0c;让UE4/5着色器编译速度变快 一、问题描述 二、解决方法 &#xff08;一&#xff09;硬件升级 &#xff08;二&#xff09;调整相关设置和提升优先级 1.调整相关设置 &#xff08;1&#xff09…...

如何查看极狐GitLab Helm Chart?

GitLab 是一个全球知名的一体化 DevOps 平台&#xff0c;很多人都通过私有化部署 GitLab 来进行源代码托管。极狐GitLab &#xff1a;https://gitlab.cn/install?channelcontent&utm_sourcecsdn 是 GitLab 在中国的发行版&#xff0c;专门为中国程序员服务。可以一键式部署…...

代码随想录算法训练营第十六天| 530.二叉搜索树的最小绝对差、501.二叉搜索树中的众数、236. 二叉树的最近公共祖先

写代码的第十六天&#xff0c;自从到了二叉树错误版代码就少了&#xff0c;因为我自己根本没思路&#xff0c;都是看完思路在做&#xff0c;那基本上就是小语法问题&#xff0c;很少有其他问题了&#xff0c;证实了我好菜。。。。。。 还是得写思路啊啊啊啊&#xff0c;写思路好…...

NODEJS复习(ctfshow334-344)

NODEJS复习 web334 下载源码代码审计 发现账号密码 代码逻辑 var findUser function(name, password){ return users.find(function(item){ return name!CTFSHOW && item.username name.toUpperCase() && item.password password; }); }; 名字不等于ctf…...

【Go系列】RPC和grpc

承上启下 介绍完了Go怎么实现RESTFul api&#xff0c;不可避免的&#xff0c;今天必须得整一下rpc这个概念。rpc是什么呢&#xff0c;很多人都想把rpc和http一起对比&#xff0c;但是他们不是一个概念。RPC是一种思想&#xff0c;可以基于tcp&#xff0c;可以基于udp也可以基于…...

【VUE】v-if和v-for的优先级

v-if和v-for v-if 用来显示和隐藏元素 flag为true时&#xff0c;dom元素会被删除达到隐藏效果 <div class"boxIf" v-if"flag"></div>v-for用来进行遍历&#xff0c;可以遍历数字对象数组&#xff0c;会将整个元素遍历指定次数 <!-- 遍…...

【单目3D检测】smoke(1):模型方案详解

纵目发表的这篇单目3D目标检测论文不同于以往用2D预选框建立3D信息&#xff0c;而是采取直接回归3D信息&#xff0c;这种思路简单又高效&#xff0c;并不需要复杂的前后处理&#xff0c;而且是一种one stage方法&#xff0c;对于实际业务部署也很友好。 题目&#xff1a;SMOKE&…...

建手机号码的网站/网站权重优化

Batch、Epoch和IterationBatch&#xff08;批次&#xff09;Epoch&#xff08;轮次&#xff09;Iteration&#xff08;迭代&#xff09;在深度学习中&#xff0c;Batch、Epoch和Iteration是非常重要的概念&#xff0c;它们是训练模型时的三个基本单位。以下是它们的概念、区别和…...

企业营销型网站应该有哪些内容/广告联盟赚钱app

在学习HTML阶段的最后&#xff0c;我们会涉及到学习语义化标签&#xff0c;明明用div等标签就可以构成页面&#xff0c;那么为什么还会有语义化标签的存在&#xff1f;语义化标签到底是什么&#xff1f;学好语义化标签又会在哪方面应用&#xff1f;接下来会从上面几个方面说一下…...

用什么做网站开发/win7优化软件

今天主要是寻找板卡问题然后维修&#xff0c;这次生产了600PCS板卡&#xff0c;第一次小批量生产。记得第一次打样是4PCS&#xff0c;很多问题都无法暴露出来&#xff0c;这次600PCS就暴露不少问题了。首先功耗问题就有两个&#xff0c;然后其他的小问题有几个&#xff0c;所以…...

新势力网站建设/网站优化关键词排名

laravel-modules可以通过模块化的方式进行开发。 另外。我们开发可以不从app里面进行开发 因为app本身也携带了一些laravel的类。以后如果出来laravel 9 或者 laravel10的话 我们升级也好升级。因为我们已经新建了别的模块 效果如下 不需要手动 安装。 首先在 Laravel 项…...

西安网站建设 企业建站/网络推广 网站制作

P30 递归1.概述2.递归累加求和3.递归求阶乘4.递归打印多级目录系统&#xff1a;Win10 Java&#xff1a;1.8.0_333 IDEA&#xff1a;2020.3.4 1.概述 递归&#xff1a;指在当前方法内调用自己的这种现象 递归的分类&#xff1a;递归分别为两类&#xff1a;直接递归和间接递归  …...

网站建设移动端是什么意思/免费云服务器

本篇文章朋友在上海游玩的时候突然想到的...之前就有想写几篇关于nullnull的文章&#xff0c;所以回家到之后就奋笔疾书的写出来发表了 http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId709 每日一道理 谁说人与人隔着遥远的重洋&#xff0c;谁说心与心设着坚固的…...