智能水果保鲜度检测:基于YOLO和深度学习的完整实现
引言
水果新鲜程度直接影响其口感和营养价值。为了提高水果品质管理的效率和准确性,本文介绍了一种基于深度学习的水果新鲜程度检测系统。该系统包括用户界面,利用YOLO(You Only Look Once)v8/v7/v6/v5模型进行水果新鲜程度检测,并提供了完整的实现步骤和详细代码。
系统架构
- 环境搭建
- 数据收集和预处理
- 模型训练
- 系统实现
- 用户界面设计
环境搭建
在开始实现水果新鲜程度检测系统之前,我们需要搭建一个合适的开发环境。本文假设使用Python 3.8或以上版本。
安装基础依赖
首先,安装基础的Python依赖包:
pip install numpy pandas matplotlib opencv-python
安装深度学习框架
我们使用YOLO模型进行水果新鲜程度检测,因此需要安装相关的深度学习框架,如PyTorch或TensorFlow。本文使用PyTorch和Ultralytics的YOLO库。
pip install torch torchvision torchaudio
pip install ultralytics
安装用户界面库
为了实现用户界面,本文使用PyQt5。
pip install PyQt5
验证安装
确保所有包都安装成功,可以通过以下命令验证:
import torch
import cv2
import PyQt5
import ultralyticsprint("All packages installed successfully.")
数据收集和预处理
数据集
为了训练一个高精度的水果新鲜程度检测模型,我们需要一个包含各种水果及其不同新鲜程度图片的数据集。可以使用以下途径收集数据:
- 公开数据集:如Kaggle上的相关数据集。
- 自定义数据集:通过互联网、市场、农场等途径收集图片。
数据标注
使用工具如LabelImg对数据进行标注。标注内容包括水果的位置(bounding box)和标签(新鲜/不新鲜)。
# 训练数据集文件结构示例
dataset/├── images/│ ├── train/│ └── val/└── labels/├── train/└── val/
模型训练
YOLO模型有多个版本,本文选取YOLOv8作为示范,其他版本可以通过相似方法实现。
配置YOLO数据集
首先,创建一个YAML文件来配置数据集信息:
# dataset.yaml
train: path/to/train/images
val: path/to/val/imagesnc: 2
names: ['Fresh', 'Not_Fresh']
模型训练代码
使用YOLOv8进行模型训练,假设数据已经按照YOLO的格式进行预处理和标注。
from ultralytics import YOLO# 加载预训练的YOLOv8模型
model = YOLO('yolov8.yaml')# 配置训练参数
model.train(data='path/to/dataset.yaml', epochs=50, imgsz=640, batch=16)# 保存训练后的模型
model.save('best.pt')
系统实现
水果新鲜程度检测
利用训练好的模型进行水果新鲜程度检测,并实现视频流的实时检测。
import cv2
from ultralytics import YOLO# 加载训练好的模型
model = YOLO('best.pt')# 打开视频流
cap = cv2.VideoCapture('path/to/video.mp4')while cap.isOpened():ret, frame = cap.read()if not ret:break# 检测水果新鲜程度results = model(frame)for result in results:bbox = result['bbox']label = result['label']confidence = result['confidence']# 画框和标签cv2.rectangle(frame, (bbox[0], bbox[1]), (bbox[2], bbox[3]), (0, 255, 0), 2)cv2.putText(frame, f'{label} {confidence:.2f}', (bbox[0], bbox[1] - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 255, 0), 2)# 显示视频cv2.imshow('Fruit Freshness Detection', frame)if cv2.waitKey(1) & 0xFF == ord('q'):breakcap.release()
cv2.destroyAllWindows()
用户界面设计
用户界面采用PyQt5实现,提供视频播放和水果新鲜程度检测结果显示。
安装PyQt5
pip install PyQt5
界面代码
import sys
from PyQt5.QtWidgets import QApplication, QWidget, QVBoxLayout, QLabel, QPushButton, QFileDialog
from PyQt5.QtGui import QPixmap, QImage
import cv2
from ultralytics import YOLOclass FruitFreshnessUI(QWidget):def __init__(self):super().__init__()self.initUI()self.model = YOLO('best.pt')def initUI(self):self.setWindowTitle('Fruit Freshness Detection System')self.layout = QVBoxLayout()self.label = QLabel(self)self.layout.addWidget(self.label)self.button = QPushButton('Open Video', self)self.button.clicked.connect(self.open_video)self.layout.addWidget(self.button)self.setLayout(self.layout)def open_video(self):options = QFileDialog.Options()video_path, _ = QFileDialog.getOpenFileName(self, "Open Video", "", "All Files (*);;MP4 Files (*.mp4)", options=options)if video_path:self.detect_freshness(video_path)def detect_freshness(self, video_path):cap = cv2.VideoCapture(video_path)while cap.isOpened():ret, frame = cap.read()if not ret:breakresults = self.model(frame)for result in results:bbox = result['bbox']label = result['label']confidence = result['confidence']cv2.rectangle(frame, (bbox[0], bbox[1]), (bbox[2], bbox[3]), (0, 255, 0), 2)cv2.putText(frame, f'{label} {confidence:.2f}', (bbox[0], bbox[1] - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 255, 0), 2)# 将frame转换为QImageheight, width, channel = frame.shapebytesPerLine = 3 * widthqImg = QImage(frame.data, width, height, bytesPerLine, QImage.Format_RGB888).rgbSwapped()self.label.setPixmap(QPixmap.fromImage(qImg))cv2.waitKey(1)cap.release()if __name__ == '__main__':app = QApplication(sys.argv)ex = FruitFreshnessUI()ex.show()sys.exit(app.exec_())
结论与声明
本文介绍了一个基于深度学习的水果新鲜程度检测系统,详细描述了从环境搭建、数据收集和标注、模型训练、系统实现到用户界面设计的全过程。通过结合YOLO模型和PyQt5,我们可以实现一个实时、精确的水果新鲜程度检测系统,为水果品质管理提供有力支持。
如果想要项目源代码+远程部署+UI+数据集的可以联系作者。
相关文章:
![](https://www.ngui.cc/images/no-images.jpg)
智能水果保鲜度检测:基于YOLO和深度学习的完整实现
引言 水果新鲜程度直接影响其口感和营养价值。为了提高水果品质管理的效率和准确性,本文介绍了一种基于深度学习的水果新鲜程度检测系统。该系统包括用户界面,利用YOLO(You Only Look Once)v8/v7/v6/v5模型进行水果新鲜程度检测&…...
![](https://www.ngui.cc/images/no-images.jpg)
C#中implicit 关键字的使用:隐式转换操作符
在 C# 中,implicit 关键字用于定义隐式转换操作符。隐式转换操作符允许自动将一种数据类型转换为另一种类型,而无需显式地调用转换方法或进行类型转换。下面将详细介绍 implicit 关键字的定义和使用。 1. 隐式转换操作符 定义 隐式转换操作符可以定义在一个类或结构体中,…...
![](https://www.ngui.cc/images/no-images.jpg)
Laravel表单验证:自定义规则的艺术
Laravel表单验证:自定义规则的艺术 在Web应用开发中,表单验证是确保数据完整性和安全性的关键步骤。Laravel提供了一个强大且灵活的验证系统,允许开发者定义自定义验证规则,以满足特定的业务需求。本文将详细介绍如何在Laravel中…...
![](https://i-blog.csdnimg.cn/direct/d929d1756a884015ad414db936598e28.png)
Linux中的环境变量
一、环境变量定义 一般是指在操作系统中用来指定操作系统运行环境的一些参数 如:我们在编写C/C代码的时候,在链接的时候,从来不知道我们的所链接的动态静态库在哪里,但 是照样可以链接成功,生成可执行程序,…...
![](https://i-blog.csdnimg.cn/direct/f9c34aad50264c26bfafbd1806a9f021.jpeg)
关于集成网络变压器的RJ45网口
集成网络变压器的RJ45网口是一种将网络变压器与RJ45接口集成在一起的网络连接解决方案。这种集成设计具有多项优势,使其在现代网络设备中得到广泛应用。 优势与特点 1. **空间节省**:集成设计减少了组件数量和连接线缆长度,有助于节省设备内…...
![](https://img-blog.csdnimg.cn/img_convert/ff6e41335d46ab7f85ca41ef83430482.png)
JMX 反序列化漏洞
前言 前段时间看到普元 EOS Platform 爆了这个洞,Apache James,Kafka-UI 都爆了这几个洞,所以决定系统来学习一下这个漏洞点。 JMX 基础 JMX 前置知识 JMX(Java Management Extensions,即 Java 管理扩展࿰…...
![](https://i-blog.csdnimg.cn/direct/53c2443105354142b4d9651d01be5994.png)
【Qt】常用控件 Q widget的enabled属性,geometry属性
Qt是一个实现图形化程序的程序。为了便于我们开发,Qt为我们提供了许多“控件”。我们需要熟悉并掌握这些控件的使用。 一.什么是控件 控件是构成⼀个图形化界⾯的基本要素. 示例一: 像上述⽰例一中的,按钮,列表视图,树形视图,单⾏输⼊框,多⾏输⼊框,滚动…...
![](https://i-blog.csdnimg.cn/direct/2f7377ebdefb40cc98ac2c9e946e669a.png)
Unity3d开发google chrome的dinosaur游戏
游戏效果 游戏中: 游戏中止: 一、制作参考 如何制作游戏?【15分钟】教会你制作Unity小恐龙游戏!新手15分钟内马上学会!_ unity教学 _ 制作游戏 _ 游戏开发_哔哩哔哩_bilibili 二、图片资源 https://download.csdn.…...
![](https://img-blog.csdnimg.cn/img_convert/652e9554aad58952d520ab4f798bd617.jpeg)
【数据分享】2013-2022年我国省市县三级的逐日SO2数据(excel\shp格式\免费获取)
空气质量数据是在我们日常研究中经常使用的数据!之前我们给大家分享了2000——2022年的省市县三级的逐日PM2.5数据和2013-2022年的省市县三级的逐日CO数据(均可查看之前的文章获悉详情)! 本次我们分享的是我国2013——2022年的省…...
![](https://i-blog.csdnimg.cn/direct/2267ce0528ea46d4a3a0c66fcef1b998.png)
【玩转C语言】第五讲--->数组-->一维和多维深度理解
🔥博客主页🔥:【 坊钰_CSDN博客 】 欢迎各位点赞👍评论✍收藏⭐ 引言: 大家好,我是坊钰,为了让大家深入了解C语言,我开创了【玩转C语言系列】,将为大家介绍C语言相关知识…...
![](https://i-blog.csdnimg.cn/direct/393075999f9349978ec688a30a1e9b93.png)
Apache Flink 任务提交模式
Flink 任务提交模式 Flink可以基于多种模式部署:基于Standalone 部署模式,基于Yarn部署模式,基于Kubernetes部署模式以上不同集群部署模式下提交Flink任务会涉及申请资源,各角色交互过程,不同模式申请资源涉及到的角色…...
![](https://i-blog.csdnimg.cn/direct/aa12e5c50764435db81a8fdca4c27876.png)
Ubuntu22.04安装OMNeT++
一、官网地址及安装指南 官网地址:OMNeT Discrete Event Simulator 官网安装指南(V6.0.3):https://doc.omnetpp.org/omnetpp/InstallGuide.pdf 官网下载地址:OMNeT Downloads 旧版本下载地址:OMNeT Old…...
![](https://www.ngui.cc/images/no-images.jpg)
Matlab课程设计——手指静脉识别项目
手指静脉识别项目 项目方案设计介绍 本项目实现手指图像的处理和匹配算法,需要处理的数据是本人不同手指的图像,首先经过图像处理,使得指静脉的纹理增强凸显处理,然后将所有的这些图像进行相互间的匹配,检验类内和类…...
![](https://www.ngui.cc/images/no-images.jpg)
centos软件安装
安装方式 一、二进制安装 --解压即用,只针对特殊平台 --jdk tomcat 二、RPM:按照一定规范安装软件,无法安装依赖的文件 --mysql 三、yum:远程安装基于RPM,把依赖的文件安装上去,需要联网 四、源码安装 jdk安…...
![](https://www.ngui.cc/images/no-images.jpg)
力扣 217. 存在重复元素,389. 找不同,705. 设计哈希集合,3. 无重复字符的最长子串,139. 单词拆分
217. 存在重复元素 题目 给你一个整数数组 nums 。如果任一值在数组中出现 至少两次 ,返回 true ;如果数组中每个元素互不相同,返回 false 。 AC代码 class Solution { public:bool containsDuplicate(vector<int>& nums) {// …...
![](https://www.ngui.cc/images/no-images.jpg)
嵌入式软件工作能力
1. 工作能力 技术能力强,并不代表工作能力 2. 流程把控 3. 项目管理 4. “找茬”能力 5. 文档输出能力...
![](https://i-blog.csdnimg.cn/direct/3ab21d74a6f540869a80887eb887e7af.png)
景区导航导览系统:基于AR技术+VR技术的功能效益全面解析
在数字化时代背景下,游客对旅游体验的期望不断提升。游客们更倾向于使用手机作为旅行的贴身助手,不仅因为它能提供实时、精准的导航服务,更在于其融合AR(增强现实)、VR(虚拟现实)等前沿技术&…...
![](https://i-blog.csdnimg.cn/direct/b3e03337ebce4278a5dd4b9cb68bdba9.png)
Mybatis-Plus代码生成器配置方法
Mybatis-Plus网址:https://baomidou.com/pages/779a6e/#%E4%BD%BF%E7%94%A8 第一步:引入依赖 <!-- 代码生成器 --> <dependency><groupId>com.baomidou</groupId><artifactId>mybatis-plus-generator</artifactId>…...
![](https://i-blog.csdnimg.cn/direct/c6d64df5a0304a45acef0294c8017b4e.png)
三主机部署HP Anyware Manager服务
一、序言 在部署拓扑和方案方面,HP Anyware Manager 非常灵活,可以部署在单个主机中,也可以部署在多个主机中,具体取决于组织的网络环境和运营要求。 二、单主机部署 2.1 描述 此部署配置是当 Anyware Manager 和 MongoDB 以及…...
![](https://i-blog.csdnimg.cn/direct/13a0afc1e3da453c889745a29ae4eeaa.png)
Grafana :利用Explore方式实现多条件查询
背景 日志统一推送到Grafana上管理。所以,有了在Grafana上进行日志搜索的需求,而进行日志搜索通常需要多条件组合。 解决方案 通过Grafana的Explore的方式实现多条件查询。 直接看操作步骤: 在主页搜索框中输入“Explore” 进入这个界面…...
![](https://i-blog.csdnimg.cn/direct/b51e6f4a3b3143ba9d282f52d613f2ae.png)
腾讯技术创作特训营 -- SUPERWINNIE -- AI重塑社交内容
目录 1 什么是AI社交内容 2 案例拆解 3 用LLM做爆文选题 4 用LLM出爆文脚本提示词 1 什么是AI社交内容 任何一个因素被AI取代都是AI社交内容 2 案例拆解 数字人 资讯素材 录屏产品的素材(小红书测试AI产品) 脚本 素材 剪辑 3 用LLM做爆文选题 &…...
![](https://i-blog.csdnimg.cn/direct/d6ac045c485c45df9f03eeefd8666a9f.png)
AV1技术学习: Compound Prediction
一、双向 Compound Prediction AV1支持两个参考帧的预测通过多种复合模式线性组合。复合预测公式为 其中,权重m(x, y) is scaled by 64 以进行整数计算,R1(x, y)和R2(x, y)表示两个参考块中位于(x, y)的像素。P(x, y)将按比例缩小 1/64 以形成最终的预测…...
![](https://www.ngui.cc/images/no-images.jpg)
watch监听vue2与vue3的写法
watch的属性值 handler:回调函数, 即监听到变化时应该执行的函数,可以是单独的函数或带有 immediate 和 deep 属性的对象watch: {someProperty: function(newVal, oldVal) {// 处理逻辑}}deep: 其值是true或false, 当属性值是对象或数组时,深度观察会监…...
![](https://i-blog.csdnimg.cn/direct/8c1801abd307409cbba45bf327bbef33.png)
docker搭建普罗米修斯监控gpu
ip8的服务器监控ip110和ip111的服务器 被监控的服务器110和111只需要安装node-export和nvidia-container-toolkit 下载镜像包 docker pull prom/node-exporter docker pull prom/prometheus docker pull grafana/grafana新建目录 mkdir /opt/prometheus cd /opt/prometheus/…...
![](https://i-blog.csdnimg.cn/direct/f893cff557f549a5b04edda3aef83a8d.png)
像 MvvmLight 一样使用 CommunityToolkit.Mvvm 工具包
文章目录 简介一、安装工具包二、实现步骤1.按照MvvmLight 的结构创建对应文件夹和文件2.编辑 ViewModelLocator3.引用全局资源二、使用详情1.属性2.命令3. 消息通知4. 完整程序代码展示运行结果简介 CommunityToolkit.Mvvm 包(又名 MVVM 工具包,以前称为 Microsoft.Toolkit…...
![](https://www.ngui.cc/images/no-images.jpg)
python入门课程Pro(2)--循环
循环 第1课 for循环的基本操作1.循环2.遍历3.for 循环遍历字典(1) 遍历字典的键(2)遍历字典的值(3)遍历字典的键和值 4.练习题(1)班级成绩单(2)最出名的城市(3)修改成绩(…...
![](https://www.ngui.cc/images/no-images.jpg)
今日总结:雪花算法,拉取在线用户
雪花算法: public class SnowflakeIdGenerator {private final long epoch 1626804000000L; // 定义起始时间戳,这里设置为2021-07-21 00:00:00 UTCprivate final long workerIdBits 5L; // 机器ID所占的位数private final long sequenceBits 10L; /…...
![](https://img-blog.csdnimg.cn/img_convert/b331e2e9fa0eea0991ad6672bfad7d96.png)
前瞻断言与后瞻断言:JavaScript 正则表达式的秘密武器
JavaScript 中的前瞻断言(lookahead)和后瞻断言(lookbehind)相信用过的小伙伴就知道它的威力了,在一些特定的需求场景下,可以做到四两拨千斤的作用,今天让我们来盘点一下在 JavaScript 正则表达…...
![](https://i-blog.csdnimg.cn/direct/f85a676e84ac4ae0bce7aeb2e8e60bfe.png)
昇思MindSpore学习总结十六 —— 基于MindSpore的GPT2文本摘要
1、mindnlp 版本要求 !pip install tokenizers0.15.0 -i https://pypi.tuna.tsinghua.edu.cn/simple # 该案例在 mindnlp 0.3.1 版本完成适配,如果发现案例跑不通,可以指定mindnlp版本,执行!pip install mindnlp0.3.1 !pip install mindnlp …...
![](https://www.ngui.cc/images/no-images.jpg)
React Router 6笔记
一个路由就是一个映射关系 key为路径,value可能是function或component 路由分类 后端路由(node) value是function,用来处理客户端提交的请求注册路由:router.get(path, function(req, res))工作过程:当…...
做 网站 要专线吗/福州关键词优化平台
针对这个问题,网上有很多方法,但主要是python无法找到其他函数所在的.py文件。不同情况有不同的方法:假设A.py文件需要调用B.py文件内的P(x,y)函数情况一:假如在同一目录下,则需import Bif __name__ "__mian__&q…...
![](/images/no-images.jpg)
炫彩发光字制作网站/广东网站se0优化公司
最近一直找java8相关新特性的文章,发现都太没有一个连贯性,毕竟大家写博客肯定都有自己的侧重点,这里找到一本书,专门介绍java8新特性的,感觉大家可以看看《写给大忙人看的JavaSE8》.这里我会结合书中的知识以及网上的…...
![](https://images2018.cnblogs.com/blog/1244344/201805/1244344-20180513165123518-1321040274.png)
wordpress 5.0.2企业站主题/百度新闻发布平台
虽然这是一次失败的渗透,但是也学到不少新姿势。 目标机环境:①外网②win2012③360全家桶 一,利用Struts2终极利用工具上传一句话 jsp的一句话,有时候会出现兼容问题。比如Cknife的jsp一句话,K8飞刀就连接不了。我这里…...
![](/images/no-images.jpg)
专业营销网站建设/南京关键词网站排名
路由条目进入路由表的前提条件:路由条目的“下一跳”,必须可达;即路由条目中的网段后面的端口和IP地址,必须是可以访问的;如果是端口,则必须得是 up / up 的; 如果是IP地址,则必须得…...
![](/images/no-images.jpg)
手机网站和电脑网站/脑白金网络营销
Spire.XLS是一款专业的Excel控件,无需安装微软Excel,也能拥有Excel的全套功能,能够为工厂智能化提供完善的Excel需求。【下载Spire.XLS最新试用版】组合图表是指在同一张图表中包含两种或以上样式的图表,我们在使用Excel分析数据时…...
![](/images/no-images.jpg)
如何做好公司网站/重庆seo网站推广费用
假设,我们现在需要对我们的 http://wiki.ossez.com 网站上的首页进行载入测试。我们想模拟多个用户对网站进行同时进行访问时候服务器的性能。JMeter 如何记录网页上的元素图文教程 [url]http://www.ossez.com/forum.php?modviewthread&tid12999&fromuid42…...