当前位置: 首页 > news >正文

架构以及架构中的组件

架构以及架构中的组件

    • Transform

Transform

以下的代码包含:

  1. 标准化的示例
  2. 残差化的示例
# huggingface
# transformers# https://www.bilibili.com/video/BV1At4y1W75x?spm_id_from=333.999.0.0import copy
import math
from collections import namedtupleimport numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import VariableHypothesis = namedtuple('Hypothesis', ['value', 'score'])def clones(module, n):return nn.ModuleList([copy.deepcopy(module) for _ in range(n)])"""
实现x 的标准化处理(标准化的作用:使x符合正太分布)
"""
class LayerNorm(nn.Module):def __init__(self, feature, eps=1e-6):""":param feature: self-attention 的 x 的大小:param eps:"""super(LayerNorm, self).__init__()self.a_2 = nn.Parameter(torch.ones(feature))self.b_2 = nn.Parameter(torch.zeros(feature))self.eps = epsdef forward(self, x):mean = x.mean(-1, keepdim=True)std = x.std(-1, keepdim=True)return self.a_2 * (x - mean) / (std + self.eps) + self.b_2"""
残差化的示例
"""
class SublayerConnection(nn.Module):"""这不仅仅做了残差,这是把残差和 layernorm 一起给做了"""def __init__(self, size, dropout=0.1):super(SublayerConnection, self).__init__()# 第一步做 layernorm 这是类的实例化的一种方法self.layer_norm = LayerNorm(size)# 第二步做 dropoutself.dropout = nn.Dropout(p=dropout)def forward(self, x, sublayer):""":param x: 就是self-attention的输入:param sublayer: self-attention层:return:"""return self.dropout(self.layer_norm(x + sublayer(x)))class FeatEmbedding(nn.Module):def __init__(self, d_feat, d_model, dropout):super(FeatEmbedding, self).__init__()self.video_embeddings = nn.Sequential(LayerNorm(d_feat),nn.Dropout(dropout),nn.Linear(d_feat, d_model))def forward(self, x):return self.video_embeddings(x)class TextEmbedding(nn.Module):def __init__(self, vocab_size, d_model):super(TextEmbedding, self).__init__()self.d_model = d_modelself.embed = nn.Embedding(vocab_size, d_model)def forward(self, x):return self.embed(x) * math.sqrt(self.d_model)"""
给一个词向量添加位置编码的示例
"""
class PositionalEncoding(nn.Module):def __init__(self, dim, dropout, max_len=5000):if dim % 2 != 0:raise ValueError("Cannot use sin/cos positional encoding with ""odd dim (got dim={:d})".format(dim))pe = torch.zeros(max_len, dim)position = torch.arange(0, max_len).unsqueeze(1)div_term = torch.exp((torch.arange(0, dim, 2, dtype=torch.float) *-(math.log(10000.0) / dim)))pe[:, 0::2] = torch.sin(position.float() * div_term)pe[:, 1::2] = torch.cos(position.float() * div_term)pe = pe.unsqueeze(1)super(PositionalEncoding, self).__init__()self.register_buffer('pe', pe)self.drop_out = nn.Dropout(p=dropout)self.dim = dimdef forward(self, emb, step=None):emb = emb * math.sqrt(self.dim)if step is None:emb = emb + self.pe[:emb.size(0)]else:emb = emb + self.pe[step]emb = self.drop_out(emb)return emb"""
自注意力机制的实现示例
"""
def self_attention(query, key, value, dropout=None, mask=None):d_k = query.size(-1)scores = torch.matmul(query, key.transpose(-2, -1)) / math.sqrt(d_k)# mask的操作在QK之后,softmax之前if mask is not None:mask.cuda()scores = scores.masked_fill(mask == 0, -1e9)self_attn = F.softmax(scores, dim=-1)if dropout is not None:self_attn = dropout(self_attn)return torch.matmul(self_attn, value), self_attn"""
多头--注意力机制的实现示例
"""
class MultiHeadAttention(nn.Module):def __init__(self, head, d_model, dropout=0.1):super(MultiHeadAttention, self).__init__()assert (d_model % head == 0)self.d_k = d_model // headself.head = headself.d_model = d_modelself.linear_query = nn.Linear(d_model, d_model)self.linear_key = nn.Linear(d_model, d_model)self.linear_value = nn.Linear(d_model, d_model)self.linear_out = nn.Linear(d_model, d_model)self.dropout = nn.Dropout(p=dropout)self.attn = Nonedef forward(self, query, key, value, mask=None):if mask is not None:# 多头注意力机制的线性变换层是4维,是把query[batch, frame_num, d_model]变成[batch, -1, head, d_k]# 再1,2维交换变成[batch, head, -1, d_k], 所以mask要在第一维添加一维,与后面的self attention计算维度一样mask = mask.unsqueeze(1)n_batch = query.size(0)# if self.head == 1:#     x, self.attn = self_attention(query, key, value, dropout=self.dropout, mask=mask)# else:#     query = self.linear_query(query).view(n_batch, -1, self.head, self.d_k).transpose(1, 2)  # [b, 8, 32, 64]#     key = self.linear_key(key).view(n_batch, -1, self.head, self.d_k).transpose(1, 2)  # [b, 8, 28, 64]#     value = self.linear_value(value).view(n_batch, -1, self.head, self.d_k).transpose(1, 2)  # [b, 8, 28, 64]##     x, self.attn = self_attention(query, key, value, dropout=self.dropout, mask=mask)#     # 变为三维, 或者说是concat head#     x = x.transpose(1, 2).contiguous().view(n_batch, -1, self.head * self.d_k)query = self.linear_query(query).view(n_batch, -1, self.head, self.d_k).transpose(1, 2)  # [b, 8, 32, 64]key = self.linear_key(key).view(n_batch, -1, self.head, self.d_k).transpose(1, 2)  # [b, 8, 28, 64]value = self.linear_value(value).view(n_batch, -1, self.head, self.d_k).transpose(1, 2)  # [b, 8, 28, 64]x, self.attn = self_attention(query, key, value, dropout=self.dropout, mask=mask)# 变为三维, 或者说是concat headx = x.transpose(1, 2).contiguous().view(n_batch, -1, self.head * self.d_k)return self.linear_out(x)class PositionWiseFeedForward(nn.Module):def __init__(self, d_model, d_ff, dropout=0.1):super(PositionWiseFeedForward, self).__init__()self.w_1 = nn.Linear(d_model, d_ff)self.w_2 = nn.Linear(d_ff, d_model)self.layer_norm = nn.LayerNorm(d_model, eps=1e-6)self.dropout_1 = nn.Dropout(dropout)self.relu = nn.ReLU()self.dropout_2 = nn.Dropout(dropout)def forward(self, x):inter = self.dropout_1(self.relu(self.w_1(self.layer_norm(x))))output = self.dropout_2(self.w_2(inter))return outputclass EncoderLayer(nn.Module):def __init__(self, size, attn, feed_forward, dropout=0.1):super(EncoderLayer, self).__init__()self.attn = attnself.feed_forward = feed_forwardself.sublayer_connection = clones(SublayerConnection(size, dropout), 2)def forward(self, x, mask):x = self.sublayer_connection[0](x, lambda x: self.attn(x, x, x, mask))return self.sublayer_connection[1](x, self.feed_forward)class EncoderLayerNoAttention(nn.Module):def __init__(self, size, attn, feed_forward, dropout=0.1):super(EncoderLayerNoAttention, self).__init__()self.attn = attnself.feed_forward = feed_forwardself.sublayer_connection = clones(SublayerConnection(size, dropout), 2)def forward(self, x, mask):return self.sublayer_connection[1](x, self.feed_forward)class DecoderLayer(nn.Module):def __init__(self, size, attn, feed_forward, sublayer_num, dropout=0.1):super(DecoderLayer, self).__init__()self.attn = attnself.feed_forward = feed_forwardself.sublayer_connection = clones(SublayerConnection(size, dropout), sublayer_num)def forward(self, x, memory, src_mask, trg_mask, r2l_memory=None, r2l_trg_mask=None):x = self.sublayer_connection[0](x, lambda x: self.attn(x, x, x, trg_mask))x = self.sublayer_connection[1](x, lambda x: self.attn(x, memory, memory, src_mask))if r2l_memory is not None:x = self.sublayer_connection[-2](x, lambda x: self.attn(x, r2l_memory, r2l_memory, r2l_trg_mask))return self.sublayer_connection[-1](x, self.feed_forward)class Encoder(nn.Module):def __init__(self, n, encoder_layer):super(Encoder, self).__init__()self.encoder_layer = clones(encoder_layer, n)def forward(self, x, src_mask):for layer in self.encoder_layer:x = layer(x, src_mask)return xclass R2L_Decoder(nn.Module):def __init__(self, n, decoder_layer):super(R2L_Decoder, self).__init__()self.decoder_layer = clones(decoder_layer, n)def forward(self, x, memory, src_mask, r2l_trg_mask):for layer in self.decoder_layer:x = layer(x, memory, src_mask, r2l_trg_mask)return xclass L2R_Decoder(nn.Module):def __init__(self, n, decoder_layer):super(L2R_Decoder, self).__init__()self.decoder_layer = clones(decoder_layer, n)def forward(self, x, memory, src_mask, trg_mask, r2l_memory, r2l_trg_mask):for layer in self.decoder_layer:x = layer(x, memory, src_mask, trg_mask, r2l_memory, r2l_trg_mask)return xdef pad_mask(src, r2l_trg, trg, pad_idx):if isinstance(src, tuple):if len(src) == 4:src_image_mask = (src[0][:, :, 0] != pad_idx).unsqueeze(1)src_motion_mask = (src[1][:, :, 0] != pad_idx).unsqueeze(1)src_object_mask = (src[2][:, :, 0] != pad_idx).unsqueeze(1)src_rel_mask = (src[3][:, :, 0] != pad_idx).unsqueeze(1)enc_src_mask = (src_image_mask, src_motion_mask, src_object_mask, src_rel_mask)dec_src_mask_1 = src_image_mask & src_motion_maskdec_src_mask_2 = src_image_mask & src_motion_mask & src_object_mask & src_rel_maskdec_src_mask = (dec_src_mask_1, dec_src_mask_2)src_mask = (enc_src_mask, dec_src_mask)if len(src) == 3:src_image_mask = (src[0][:, :, 0] != pad_idx).unsqueeze(1)src_motion_mask = (src[1][:, :, 0] != pad_idx).unsqueeze(1)src_object_mask = (src[2][:, :, 0] != pad_idx).unsqueeze(1)enc_src_mask = (src_image_mask, src_motion_mask, src_object_mask)dec_src_mask = src_image_mask & src_motion_masksrc_mask = (enc_src_mask, dec_src_mask)if len(src) == 2:src_image_mask = (src[0][:, :, 0] != pad_idx).unsqueeze(1)src_motion_mask = (src[1][:, :, 0] != pad_idx).unsqueeze(1)enc_src_mask = (src_image_mask, src_motion_mask)dec_src_mask = src_image_mask & src_motion_masksrc_mask = (enc_src_mask, dec_src_mask)else:src_mask = (src[:, :, 0] != pad_idx).unsqueeze(1)if trg is not None:if isinstance(src_mask, tuple):trg_mask = (trg != pad_idx).unsqueeze(1) & subsequent_mask(trg.size(1)).type_as(src_image_mask.data)r2l_pad_mask = (r2l_trg != pad_idx).unsqueeze(1).type_as(src_image_mask.data)r2l_trg_mask = r2l_pad_mask & subsequent_mask(r2l_trg.size(1)).type_as(src_image_mask.data)return src_mask, r2l_pad_mask, r2l_trg_mask, trg_maskelse:trg_mask = (trg != pad_idx).unsqueeze(1) & subsequent_mask(trg.size(1)).type_as(src_mask.data)r2l_pad_mask = (r2l_trg != pad_idx).unsqueeze(1).type_as(src_mask.data)r2l_trg_mask = r2l_pad_mask & subsequent_mask(r2l_trg.size(1)).type_as(src_mask.data)return src_mask, r2l_pad_mask, r2l_trg_mask, trg_mask  # src_mask[batch, 1, lens]  trg_mask[batch, 1, lens]else:return src_maskdef subsequent_mask(size):"""Mask out subsequent positions."""attn_shape = (1, size, size)mask = np.triu(np.ones(attn_shape), k=1).astype('uint8')return (torch.from_numpy(mask) == 0).cuda()class Generator(nn.Module):def __init__(self, d_model, vocab_size):super(Generator, self).__init__()self.linear = nn.Linear(d_model, vocab_size)def forward(self, x):return F.log_softmax(self.linear(x), dim=-1)class ABDTransformer(nn.Module):def __init__(self, vocab, d_feat, d_model, d_ff, n_heads, n_layers, dropout, feature_mode,device='cuda', n_heads_big=128):super(ABDTransformer, self).__init__()self.vocab = vocabself.device = deviceself.feature_mode = feature_modec = copy.deepcopy# attn_no_heads = MultiHeadAttention(1, d_model, dropout)attn = MultiHeadAttention(n_heads, d_model, dropout)attn_big = MultiHeadAttention(n_heads_big, d_model, dropout)# attn_big2 = MultiHeadAttention(10, d_model, dropout)feed_forward = PositionWiseFeedForward(d_model, d_ff)if feature_mode == 'one':self.src_embed = FeatEmbedding(d_feat, d_model, dropout)elif feature_mode == 'two':self.image_src_embed = FeatEmbedding(d_feat[0], d_model, dropout)self.motion_src_embed = FeatEmbedding(d_feat[1], d_model, dropout)elif feature_mode == 'three':self.image_src_embed = FeatEmbedding(d_feat[0], d_model, dropout)self.motion_src_embed = FeatEmbedding(d_feat[1], d_model, dropout)self.object_src_embed = FeatEmbedding(d_feat[2], d_model, dropout)elif feature_mode == 'four':self.image_src_embed = FeatEmbedding(d_feat[0], d_model, dropout)self.motion_src_embed = FeatEmbedding(d_feat[1], d_model, dropout)self.object_src_embed = FeatEmbedding(d_feat[2], d_model, dropout)self.rel_src_embed = FeatEmbedding(d_feat[3], d_model, dropout)self.trg_embed = TextEmbedding(vocab.n_vocabs, d_model)self.pos_embed = PositionalEncoding(d_model, dropout)# self.encoder_no_heads = Encoder(n_layers, EncoderLayer(d_model, c(attn_no_heads), c(feed_forward), dropout))self.encoder = Encoder(n_layers, EncoderLayer(d_model, c(attn), c(feed_forward), dropout))self.encoder_big = Encoder(n_layers, EncoderLayer(d_model, c(attn_big), c(feed_forward), dropout))# self.encoder_big2 = Encoder(n_layers, EncoderLayer(d_model, c(attn_big2), c(feed_forward), dropout))self.encoder_no_attention = Encoder(n_layers,EncoderLayerNoAttention(d_model, c(attn), c(feed_forward), dropout))self.r2l_decoder = R2L_Decoder(n_layers, DecoderLayer(d_model, c(attn), c(feed_forward),sublayer_num=3, dropout=dropout))self.l2r_decoder = L2R_Decoder(n_layers, DecoderLayer(d_model, c(attn), c(feed_forward),sublayer_num=4, dropout=dropout))self.generator = Generator(d_model, vocab.n_vocabs)def encode(self, src, src_mask, feature_mode_two=False):if self.feature_mode == 'two':x1 = self.image_src_embed(src[0])x1 = self.pos_embed(x1)x1 = self.encoder_big(x1, src_mask[0])x2 = self.motion_src_embed(src[1])x2 = self.pos_embed(x2)x2 = self.encoder_big(x2, src_mask[1])return x1 + x2if feature_mode_two:x1 = self.image_src_embed(src[0])x1 = self.pos_embed(x1)x1 = self.encoder_big(x1, src_mask[0])x2 = self.motion_src_embed(src[1])x2 = self.pos_embed(x2)x2 = self.encoder_big(x2, src_mask[1])return x1 + x2if self.feature_mode == 'one':x = self.src_embed(src)x = self.pos_embed(x)return self.encoder(x, src_mask)elif self.feature_mode == 'two':x1 = self.image_src_embed(src[0])x1 = self.pos_embed(x1)x1 = self.encoder_big(x1, src_mask[0])x2 = self.motion_src_embed(src[1])x2 = self.pos_embed(x2)x2 = self.encoder_big(x2, src_mask[1])return x1 + x2elif self.feature_mode == 'three':x1 = self.image_src_embed(src[0])x1 = self.pos_embed(x1)x1 = self.encoder(x1, src_mask[0])x2 = self.motion_src_embed(src[1])x2 = self.pos_embed(x2)x2 = self.encoder(x2, src_mask[1])x3 = self.object_src_embed(src[2])x3 = self.pos_embed(x3)x3 = self.encoder(x3, src_mask[2])return x1 + x2 + x3elif self.feature_mode == 'four':x1 = self.image_src_embed(src[0])x1 = self.pos_embed(x1)x1 = self.encoder(x1, src_mask[0])x2 = self.motion_src_embed(src[1])x2 = self.pos_embed(x2)x2 = self.encoder(x2, src_mask[1])x3 = self.object_src_embed(src[2])# x3 = self.pos_embed(x3)x3 = self.encoder(x3, src_mask[2])# x3 = self.encoder_no_attention(x3, src_mask[2])x4 = self.rel_src_embed(src[3])# x4 = self.pos_embed(x4)# x4 = self.encoder_no_# heads(x4, src_mask[3])x4 = self.encoder_no_attention(x4, src_mask[3])# x4 = self.encoder(x4, src_mask[3])return x1 + x2 + x3 + x4def r2l_decode(self, r2l_trg, memory, src_mask, r2l_trg_mask):x = self.trg_embed(r2l_trg)x = self.pos_embed(x)return self.r2l_decoder(x, memory, src_mask, r2l_trg_mask)def l2r_decode(self, trg, memory, src_mask, trg_mask, r2l_memory, r2l_trg_mask):x = self.trg_embed(trg)x = self.pos_embed(x)return self.l2r_decoder(x, memory, src_mask, trg_mask, r2l_memory, r2l_trg_mask)def forward(self, src, r2l_trg, trg, mask):src_mask, r2l_pad_mask, r2l_trg_mask, trg_mask = maskif self.feature_mode == 'one':encoding_outputs = self.encode(src, src_mask)r2l_outputs = self.r2l_decode(r2l_trg, encoding_outputs, src_mask, r2l_trg_mask)l2r_outputs = self.l2r_decode(trg, encoding_outputs, src_mask, trg_mask, r2l_outputs, r2l_pad_mask)elif self.feature_mode == 'two' or 'three' or 'four':enc_src_mask, dec_src_mask = src_maskr2l_encoding_outputs = self.encode(src, enc_src_mask, feature_mode_two=True)encoding_outputs = self.encode(src, enc_src_mask)r2l_outputs = self.r2l_decode(r2l_trg, r2l_encoding_outputs, dec_src_mask[0], r2l_trg_mask)l2r_outputs = self.l2r_decode(trg, encoding_outputs, dec_src_mask[1], trg_mask, r2l_outputs, r2l_pad_mask)# r2l_outputs = self.r2l_decode(r2l_trg, encoding_outputs, dec_src_mask, r2l_trg_mask)# l2r_outputs = self.l2r_decode(trg, encoding_outputs, dec_src_mask, trg_mask, None, None)else:raise "没有输出"r2l_pred = self.generator(r2l_outputs)l2r_pred = self.generator(l2r_outputs)return r2l_pred, l2r_preddef greedy_decode(self, batch_size, src_mask, memory, max_len):eos_idx = self.vocab.word2idx['<S>']r2l_hidden = Nonewith torch.no_grad():output = torch.ones(batch_size, 1).fill_(eos_idx).long().cuda()for i in range(max_len + 2 - 1):trg_mask = subsequent_mask(output.size(1))dec_out = self.r2l_decode(output, memory, src_mask, trg_mask)  # batch, len, d_modelr2l_hidden = dec_outpred = self.generator(dec_out)  # batch, len, n_vocabsnext_word = pred[:, -1].max(dim=-1)[1].unsqueeze(1)  # pred[:, -1]([batch, n_vocabs])output = torch.cat([output, next_word], dim=-1)return r2l_hidden, output# beam search 必用的def r2l_beam_search_decode(self, batch_size, src, src_mask, model_encodings, beam_size, max_len):end_symbol = self.vocab.word2idx['<S>']start_symbol = self.vocab.word2idx['<S>']r2l_outputs = None# 1.1 Setup Src"src has shape (batch_size, sent_len)""src_mask has shape (batch_size, 1, sent_len)"# src_mask = (src[:, :, 0] != self.vocab.word2idx['<PAD>']).unsqueeze(-2)  # TODO Untested"model_encodings has shape (batch_size, sentence_len, d_model)"# model_encodings = self.encode(src, src_mask)# 1.2 Setup Tgt Hypothesis Tracking"hypothesis is List(4 bt)[(cur beam_sz, dec_sent_len)], init: List(4 bt)[(1 init_beam_sz, dec_sent_len)]""hypotheses[i] is shape (cur beam_sz, dec_sent_len)"hypotheses = [copy.deepcopy(torch.full((1, 1), start_symbol, dtype=torch.long,device=self.device)) for _ in range(batch_size)]"List after init: List 4 bt of List of len max_len_completed, init: List of len 4 bt of []"completed_hypotheses = [copy.deepcopy([]) for _ in range(batch_size)]"List len batch_sz of shape (cur beam_sz), init: List(4 bt)[(1 init_beam_sz)]""hyp_scores[i] is shape (cur beam_sz)"hyp_scores = [copy.deepcopy(torch.full((1,), 0, dtype=torch.float, device=self.device))for _ in range(batch_size)]  # probs are log_probs must be init at 0.# 2. Iterate: Generate one char at a time until maxlenfor iter in range(max_len + 1):if all([len(completed_hypotheses[i]) == beam_size for i in range(batch_size)]):break# 2.1 Setup the batch. Since we use beam search, each batch has a variable number (called cur_beam_size)# between 0 and beam_size of hypotheses live at any moment. We decode all hypotheses for all batches at# the same time, so we must copy the src_encodings, src_mask, etc the appropriate number fo times for# the number of hypotheses for each example. We keep track of the number of live hypotheses for each example.# We run all hypotheses for all examples together through the decoder and log-softmax,# and then use `torch.split` to get the appropriate number of hypotheses for each example in the end.cur_beam_sizes, last_tokens, model_encodings_l, src_mask_l = [], [], [], []for i in range(batch_size):if hypotheses[i] is None:cur_beam_sizes += [0]continuecur_beam_size, decoded_len = hypotheses[i].shapecur_beam_sizes += [cur_beam_size]last_tokens += [hypotheses[i]]model_encodings_l += [model_encodings[i:i + 1]] * cur_beam_sizesrc_mask_l += [src_mask[i:i + 1]] * cur_beam_size"shape (sum(4 bt * cur_beam_sz_i), 1 dec_sent_len, 128 d_model)"model_encodings_cur = torch.cat(model_encodings_l, dim=0)src_mask_cur = torch.cat(src_mask_l, dim=0)y_tm1 = torch.cat(last_tokens, dim=0)"shape (sum(4 bt * cur_beam_sz_i), 1 dec_sent_len, 128 d_model)"if self.feature_mode == 'one':out = self.r2l_decode(Variable(y_tm1).to(self.device), model_encodings_cur, src_mask_cur,Variable(subsequent_mask(y_tm1.size(-1)).type_as(src.data)).to(self.device))elif self.feature_mode == 'two' or 'three' or 'four':out = self.r2l_decode(Variable(y_tm1).to(self.device), model_encodings_cur, src_mask_cur,Variable(subsequent_mask(y_tm1.size(-1)).type_as(src[0].data)).to(self.device))r2l_outputs = out"shape (sum(4 bt * cur_beam_sz_i), 1 dec_sent_len, 50002 vocab_sz)"log_prob = self.generator(out[:, -1, :]).unsqueeze(1)"shape (sum(4 bt * cur_beam_sz_i), 1 dec_sent_len, 50002 vocab_sz)"_, decoded_len, vocab_sz = log_prob.shape# log_prob = log_prob.reshape(batch_size, cur_beam_size, decoded_len, vocab_sz)"shape List(4 bt)[(cur_beam_sz_i, dec_sent_len, 50002 vocab_sz)]""log_prob[i] is (cur_beam_sz_i, dec_sent_len, 50002 vocab_sz)"log_prob = torch.split(log_prob, cur_beam_sizes, dim=0)# 2.2 Now we process each example in the batch. Note that the example may have already finished processing before# other examples (no more hypotheses to try), in which case we continuenew_hypotheses, new_hyp_scores = [], []for i in range(batch_size):if hypotheses[i] is None or len(completed_hypotheses[i]) >= beam_size:new_hypotheses += [None]new_hyp_scores += [None]continue# 2.2.1 We compute the cumulative scores for each live hypotheses for the example# hyp_scores is the old scores for the previous stage, and `log_prob` are the new probs for# this stage. Since they are log probs, we sum them instaed of multiplying them.# The .view(-1) forces all the hypotheses into one dimension. The shape of this dimension is# cur_beam_sz * vocab_sz (ex: 5 * 50002). So after getting the topk from it, we can recover the# generating sentence and the next word using: ix // vocab_sz, ix % vocab_sz.cur_beam_sz_i, dec_sent_len, vocab_sz = log_prob[i].shape"shape (vocab_sz,)"cumulative_hyp_scores_i = (hyp_scores[i].unsqueeze(-1).unsqueeze(-1).expand((cur_beam_sz_i, 1, vocab_sz)) + log_prob[i]).view(-1)# 2.2.2 We get the topk values in cumulative_hyp_scores_i and compute the current (generating) sentence# and the next word using: ix // vocab_sz, ix % vocab_sz."shape (cur_beam_sz,)"live_hyp_num_i = beam_size - len(completed_hypotheses[i])"shape (cur_beam_sz,). Vals are between 0 and 50002 vocab_sz"top_cand_hyp_scores, top_cand_hyp_pos = torch.topk(cumulative_hyp_scores_i, k=live_hyp_num_i)"shape (cur_beam_sz,). prev_hyp_ids vals are 0 <= val < cur_beam_sz. hyp_word_ids vals are 0 <= val < vocab_len"prev_hyp_ids, hyp_word_ids = top_cand_hyp_pos // self.vocab.n_vocabs, \top_cand_hyp_pos % self.vocab.n_vocabs# 2.2.3 For each of the topk words, we append the new word to the current (generating) sentence# We add this to new_hypotheses_i and add its corresponding total score to new_hyp_scores_inew_hypotheses_i, new_hyp_scores_i = [], []  # Removed live_hyp_ids_i, which is used in the LSTM decoder to track live hypothesis idsfor prev_hyp_id, hyp_word_id, cand_new_hyp_score in zip(prev_hyp_ids, hyp_word_ids,top_cand_hyp_scores):prev_hyp_id, hyp_word_id, cand_new_hyp_score = \prev_hyp_id.item(), hyp_word_id.item(), cand_new_hyp_score.item()new_hyp_sent = torch.cat((hypotheses[i][prev_hyp_id], torch.tensor([hyp_word_id], device=self.device)))if hyp_word_id == end_symbol:completed_hypotheses[i].append(Hypothesis(value=[self.vocab.idx2word[a.item()] for a in new_hyp_sent[1:-1]],score=cand_new_hyp_score))else:new_hypotheses_i.append(new_hyp_sent.unsqueeze(-1))new_hyp_scores_i.append(cand_new_hyp_score)# 2.2.4 We may find that the hypotheses_i for some example in the batch# is empty - we have fully processed that example. We use None as a sentinel in this case.# Above, the loops gracefully handle None examples.if len(new_hypotheses_i) > 0:hypotheses_i = torch.cat(new_hypotheses_i, dim=-1).transpose(0, -1).to(self.device)hyp_scores_i = torch.tensor(new_hyp_scores_i, dtype=torch.float, device=self.device)else:hypotheses_i, hyp_scores_i = None, Nonenew_hypotheses += [hypotheses_i]new_hyp_scores += [hyp_scores_i]# print(new_hypotheses, new_hyp_scores)hypotheses, hyp_scores = new_hypotheses, new_hyp_scores# 2.3 Finally, we do some postprocessing to get our final generated candidate sentences.# Sometimes, we may get to max_len of a sentence and still not generate the </s> end token.# In this case, the partial sentence we have generated will not be added to the completed_hypotheses# automatically, and we have to manually add it in. We add in as many as necessary so that there are# `beam_size` completed hypotheses for each example.# Finally, we sort each completed hypothesis by score.for i in range(batch_size):hyps_to_add = beam_size - len(completed_hypotheses[i])if hyps_to_add > 0:scores, ix = torch.topk(hyp_scores[i], k=hyps_to_add)for score, id in zip(scores, ix):completed_hypotheses[i].append(Hypothesis(value=[self.vocab.idx2word[a.item()] for a in hypotheses[i][id][1:]],score=score))completed_hypotheses[i].sort(key=lambda hyp: hyp.score, reverse=True)return r2l_outputs, completed_hypothesesdef beam_search_decode(self, src, beam_size, max_len):"""An Implementation of Beam Search for the Transformer Model.Beam search is performed in a batched manner. Each example in a batch generates `beam_size` hypotheses.We return a list (len: batch_size) of list (len: beam_size) of Hypothesis, which contain our output decoded sentencesand their scores.:param src: shape (sent_len, batch_size). Each val is 0 < val < len(vocab_dec). The input tokens to the decoder.:param max_len: the maximum length to decode:param beam_size: the beam size to use:return completed_hypotheses: A List of length batch_size, each containing a List of beam_size Hypothesis objects.Hypothesis is a named Tuple, its first entry is "value" and is a List of strings which contains the translated word(one string is one word token). The second entry is "score" and it is the log-prob score for this translated sentence.Note: Below I note "4 bt", "5 beam_size" as the shapes of objects. 4, 5 are default values. Actual values may differ."""# 1. Setupstart_symbol = self.vocab.word2idx['<S>']end_symbol = self.vocab.word2idx['<S>']# 1.1 Setup Src"src has shape (batch_size, sent_len)""src_mask has shape (batch_size, 1, sent_len)"# src_mask = (src[:, :, 0] != self.vocab.word2idx['<PAD>']).unsqueeze(-2)  # TODO Untestedsrc_mask = pad_mask(src, r2l_trg=None, trg=None, pad_idx=self.vocab.word2idx['<PAD>'])"model_encodings has shape (batch_size, sentence_len, d_model)"if self.feature_mode == 'one':batch_size = src.shape[0]model_encodings = self.encode(src, src_mask)r2l_memory, r2l_completed_hypotheses = self.r2l_beam_search_decode(batch_size, src, src_mask,model_encodings=model_encodings,beam_size=beam_size, max_len=max_len)elif self.feature_mode == 'two' or 'three' or 'four':batch_size = src[0].shape[0]enc_src_mask = src_mask[0]dec_src_mask = src_mask[1]r2l_model_encodings = self.encode(src, enc_src_mask, feature_mode_two=True)# model_encodings = r2l_model_encodingsmodel_encodings = self.encode(src, enc_src_mask)r2l_memory, r2l_completed_hypotheses = self.r2l_beam_search_decode(batch_size, src, dec_src_mask[0],model_encodings=r2l_model_encodings,beam_size=beam_size, max_len=max_len)# 1.2 Setup r2l target output# r2l_memory, r2l_completed_hypotheses = self.r2l_beam_search_decode(batch_size, src, src_mask,#                                                                    model_encodings=model_encodings,#                                                                    beam_size=1, max_len=max_len)# r2l_memory, r2l_completed_hypotheses = self.greedy_decode(batch_size, src_mask, model_encodings, max_len)# beam_r2l_memory = [copy.deepcopy(r2l_memory) for _ in range(beam_size)]# 1.3 Setup Tgt Hypothesis Tracking"hypothesis is List(4 bt)[(cur beam_sz, dec_sent_len)], init: List(4 bt)[(1 init_beam_sz, dec_sent_len)]""hypotheses[i] is shape (cur beam_sz, dec_sent_len)"hypotheses = [copy.deepcopy(torch.full((1, 1), start_symbol, dtype=torch.long,device=self.device)) for _ in range(batch_size)]"List after init: List 4 bt of List of len max_len_completed, init: List of len 4 bt of []"completed_hypotheses = [copy.deepcopy([]) for _ in range(batch_size)]"List len batch_sz of shape (cur beam_sz), init: List(4 bt)[(1 init_beam_sz)]""hyp_scores[i] is shape (cur beam_sz)"hyp_scores = [copy.deepcopy(torch.full((1,), 0, dtype=torch.float, device=self.device))for _ in range(batch_size)]  # probs are log_probs must be init at 0.# 2. Iterate: Generate one char at a time until maxlenfor iter in range(max_len + 1):if all([len(completed_hypotheses[i]) == beam_size for i in range(batch_size)]):break# 2.1 Setup the batch. Since we use beam search, each batch has a variable number (called cur_beam_size)# between 0 and beam_size of hypotheses live at any moment. We decode all hypotheses for all batches at# the same time, so we must copy the src_encodings, src_mask, etc the appropriate number fo times for# the number of hypotheses for each example. We keep track of the number of live hypotheses for each example.# We run all hypotheses for all examples together through the decoder and log-softmax,# and then use `torch.split` to get the appropriate number of hypotheses for each example in the end.cur_beam_sizes, last_tokens, model_encodings_l, src_mask_l, r2l_memory_l = [], [], [], [], []for i in range(batch_size):if hypotheses[i] is None:cur_beam_sizes += [0]continuecur_beam_size, decoded_len = hypotheses[i].shapecur_beam_sizes += [cur_beam_size]last_tokens += [hypotheses[i]]model_encodings_l += [model_encodings[i:i + 1]] * cur_beam_sizeif self.feature_mode == 'one':src_mask_l += [src_mask[i:i + 1]] * cur_beam_sizeelif self.feature_mode == 'two' or 'three' or 'four':src_mask_l += [dec_src_mask[1][i:i + 1]] * cur_beam_sizer2l_memory_l += [r2l_memory[i: i + 1]] * cur_beam_size"shape (sum(4 bt * cur_beam_sz_i), 1 dec_sent_len, 128 d_model)"model_encodings_cur = torch.cat(model_encodings_l, dim=0)src_mask_cur = torch.cat(src_mask_l, dim=0)y_tm1 = torch.cat(last_tokens, dim=0)r2l_memory_cur = torch.cat(r2l_memory_l, dim=0)"shape (sum(4 bt * cur_beam_sz_i), 1 dec_sent_len, 128 d_model)"if self.feature_mode == 'one':out = self.l2r_decode(Variable(y_tm1).to(self.device), model_encodings_cur, src_mask_cur,Variable(subsequent_mask(y_tm1.size(-1)).type_as(src.data)).to(self.device),r2l_memory_cur, r2l_trg_mask=None)elif self.feature_mode == 'two' or 'three' or 'four':out = self.l2r_decode(Variable(y_tm1).to(self.device), model_encodings_cur, src_mask_cur,Variable(subsequent_mask(y_tm1.size(-1)).type_as(src[0].data)).to(self.device),r2l_memory_cur, r2l_trg_mask=None)"shape (sum(4 bt * cur_beam_sz_i), 1 dec_sent_len, 50002 vocab_sz)"log_prob = self.generator(out[:, -1, :]).unsqueeze(1)"shape (sum(4 bt * cur_beam_sz_i), 1 dec_sent_len, 50002 vocab_sz)"_, decoded_len, vocab_sz = log_prob.shape# log_prob = log_prob.reshape(batch_size, cur_beam_size, decoded_len, vocab_sz)"shape List(4 bt)[(cur_beam_sz_i, dec_sent_len, 50002 vocab_sz)]""log_prob[i] is (cur_beam_sz_i, dec_sent_len, 50002 vocab_sz)"log_prob = torch.split(log_prob, cur_beam_sizes, dim=0)# 2.2 Now we process each example in the batch. Note that the example may have already finished processing before# other examples (no more hypotheses to try), in which case we continuenew_hypotheses, new_hyp_scores = [], []for i in range(batch_size):if hypotheses[i] is None or len(completed_hypotheses[i]) >= beam_size:new_hypotheses += [None]new_hyp_scores += [None]continue# 2.2.1 We compute the cumulative scores for each live hypotheses for the example# hyp_scores is the old scores for the previous stage, and `log_prob` are the new probs for# this stage. Since they are log probs, we sum them instaed of multiplying them.# The .view(-1) forces all the hypotheses into one dimension. The shape of this dimension is# cur_beam_sz * vocab_sz (ex: 5 * 50002). So after getting the topk from it, we can recover the# generating sentence and the next word using: ix // vocab_sz, ix % vocab_sz.cur_beam_sz_i, dec_sent_len, vocab_sz = log_prob[i].shape"shape (vocab_sz,)"cumulative_hyp_scores_i = (hyp_scores[i].unsqueeze(-1).unsqueeze(-1).expand((cur_beam_sz_i, 1, vocab_sz)) + log_prob[i]).view(-1)# 2.2.2 We get the topk values in cumulative_hyp_scores_i and compute the current (generating) sentence# and the next word using: ix // vocab_sz, ix % vocab_sz."shape (cur_beam_sz,)"live_hyp_num_i = beam_size - len(completed_hypotheses[i])"shape (cur_beam_sz,). Vals are between 0 and 50002 vocab_sz"top_cand_hyp_scores, top_cand_hyp_pos = torch.topk(cumulative_hyp_scores_i, k=live_hyp_num_i)"shape (cur_beam_sz,). prev_hyp_ids vals are 0 <= val < cur_beam_sz. hyp_word_ids vals are 0 <= val < vocab_len"prev_hyp_ids, hyp_word_ids = top_cand_hyp_pos // self.vocab.n_vocabs, \top_cand_hyp_pos % self.vocab.n_vocabs# 2.2.3 For each of the topk words, we append the new word to the current (generating) sentence# We add this to new_hypotheses_i and add its corresponding total score to new_hyp_scores_inew_hypotheses_i, new_hyp_scores_i = [], []  # Removed live_hyp_ids_i, which is used in the LSTM decoder to track live hypothesis idsfor prev_hyp_id, hyp_word_id, cand_new_hyp_score in zip(prev_hyp_ids, hyp_word_ids,top_cand_hyp_scores):prev_hyp_id, hyp_word_id, cand_new_hyp_score = \prev_hyp_id.item(), hyp_word_id.item(), cand_new_hyp_score.item()new_hyp_sent = torch.cat((hypotheses[i][prev_hyp_id], torch.tensor([hyp_word_id], device=self.device)))if hyp_word_id == end_symbol:completed_hypotheses[i].append(Hypothesis(value=[self.vocab.idx2word[a.item()] for a in new_hyp_sent[1:-1]],score=cand_new_hyp_score))else:new_hypotheses_i.append(new_hyp_sent.unsqueeze(-1))new_hyp_scores_i.append(cand_new_hyp_score)# 2.2.4 We may find that the hypotheses_i for some example in the batch# is empty - we have fully processed that example. We use None as a sentinel in this case.# Above, the loops gracefully handle None examples.if len(new_hypotheses_i) > 0:hypotheses_i = torch.cat(new_hypotheses_i, dim=-1).transpose(0, -1).to(self.device)hyp_scores_i = torch.tensor(new_hyp_scores_i, dtype=torch.float, device=self.device)else:hypotheses_i, hyp_scores_i = None, Nonenew_hypotheses += [hypotheses_i]new_hyp_scores += [hyp_scores_i]# print(new_hypotheses, new_hyp_scores)hypotheses, hyp_scores = new_hypotheses, new_hyp_scores# 2.3 Finally, we do some postprocessing to get our final generated candidate sentences.# Sometimes, we may get to max_len of a sentence and still not generate the </s> end token.# In this case, the partial sentence we have generated will not be added to the completed_hypotheses# automatically, and we have to manually add it in. We add in as many as necessary so that there are# `beam_size` completed hypotheses for each example.# Finally, we sort each completed hypothesis by score.for i in range(batch_size):hyps_to_add = beam_size - len(completed_hypotheses[i])if hyps_to_add > 0:scores, ix = torch.topk(hyp_scores[i], k=hyps_to_add)for score, id in zip(scores, ix):completed_hypotheses[i].append(Hypothesis(value=[self.vocab.idx2word[a.item()] for a in hypotheses[i][id][1:]],score=score))completed_hypotheses[i].sort(key=lambda hyp: hyp.score, reverse=True)# print('completed_hypotheses', completed_hypotheses)return r2l_completed_hypotheses, completed_hypotheses

相关文章:

架构以及架构中的组件

架构以及架构中的组件 Transform Transform 以下的代码包含&#xff1a; 标准化的示例残差化的示例 # huggingface # transformers# https://www.bilibili.com/video/BV1At4y1W75x?spm_id_from333.999.0.0import copy import math from collections import namedtupleimport …...

Docker启动PostgreSql并设置时间与主机同步

在 Docker 中启动 PostgreSql 时&#xff0c;需要配置容器的时间与主机同步。可以通过在 Dockerfile 或者 Docker Compose 文件中设置容器的时区&#xff0c;或者使用宿主机的时间来同步容器的时间。这样可以确保容器中的 PostgreSql 与主机的时间保持一致&#xff0c;避免在使…...

提升无线网络安全:用Python脚本发现并修复WiFi安全问题

文章目录 概要环境准备技术细节3.1 实现原理3.2 创建python文件3.3 插入内容3.4 运行python脚本 加固建议4.1 选择强密码4.2 定期更换密码4.3 启用网络加密4.4 关闭WPS4.5 隐藏SSID4.6 限制连接设备 小结 概要 在本文中&#xff0c;我们将介绍并展示如何使用Python脚本来测试本…...

#三元运算符(python/java/c)

引入&#xff1a;什么是三元运算符呢&#xff1f;无疑其操作元有三个&#xff0c;一个是条件表达式&#xff0c;剩余两个为值&#xff0c;条件表达式为真时运算取第一个值&#xff0c;为假时取第二个值。 一 Python true_expression if condition else false_expressi…...

探索Python自然语言处理的新篇章:jionlp库介绍

探索Python自然语言处理的新篇章&#xff1a;jionlp库介绍 1. 背景&#xff1a;为什么选择jionlp&#xff1f; 在Python的生态中&#xff0c;自然语言处理&#xff08;NLP&#xff09;是一个活跃且不断发展的领域。jionlp是一个专注于中文自然语言处理的库&#xff0c;它提供了…...

Deepin系统,中盛科技温湿度模块读温度纯c程序(备份)

#include <stdio.h> #include <fcntl.h> #include <unistd.h> #include <termios.h>int main() {int fd;struct termios options;// 打开串口设备fd open("/dev/ttyMP0", O_RDWR | O_NOCTTY|O_NDELAY); //O_NDELAY:打开设备不阻塞//O_NOCTT…...

文件包含漏洞: 函数,实例[pikachu_file_inclusion_local]

文件包含 文件包含是一种较为常见技术&#xff0c;允许程序员在不同的脚本或程序中重用代码或调用文件 主要作用和用途&#xff1a; 代码重用&#xff1a;通过将通用函数或代码段放入单独的文件中&#xff0c;可以在多个脚本中包含这些文件&#xff0c;避免重复编写相同代码。…...

学习计划2024下半年

基础&#xff1a; 学习《算法第4版》&#xff0c;学习leetcode上的面试经典150题&#xff0c;使用C完成&#xff1b;再看一般《深入理解计算机系统》语言&#xff1a; 学习go语言&#xff0c;并且用它写一个小软件(还没想好什么),写一个pingtool程序编程思想&#xff1a; 阅读经…...

RabbitMQ的学习和模拟实现|sqlite轻量级数据库的介绍和简单使用

SQLite3 项目仓库&#xff1a;https://github.com/ffengc/HareMQ SQLite3 什么是SQLite为什么需要用SQLite官方文档封装Helper进行一些实验 什么是SQLite SQLite是一个进程内的轻量级数据库&#xff0c;它实现了自给自足的、无服务器的、零配置的、事务性的 SQL数据库引擎…...

AI批量剪辑,批量发布大模型矩阵系统搭建开发

目录 前言 一、AI矩阵系统功能 二、AI批量剪辑可以解决什么问题&#xff1f; 总结&#xff1a; 前言 基于ai生成或剪辑视频的原理&#xff0c;利用ai将原视频进行混剪&#xff0c;生成新的视频素材。ai会将剪辑好的视频加上标题&#xff0c;批量发布到各个自媒体账号上。这…...

SpringMVC源码深度解析(中)

接上一遍博客《SpringMVC源码深度解析(上)》继续聊。最后聊到了SpringMVC的九大组建的初始化&#xff0c;以 HandlerMapping为例&#xff0c;SpringMVC提供了三个实现了&#xff0c;分别是&#xff1a;BeanNameUrlHandlerMapping、RequestMappingHandlerMapping、RouterFunctio…...

Mojo模型动态批处理:智能预测的终极武器

标题&#xff1a;Mojo模型动态批处理&#xff1a;智能预测的终极武器 在机器学习领域&#xff0c;模型的灵活性和可扩展性是至关重要的。Mojo模型&#xff08;Model-as-a-Service&#xff09;提供了一种将机器学习模型部署为服务的方式&#xff0c;允许开发者和数据科学家轻松…...

人、智能、机器人……

在遥远的未来之城&#xff0c;智能时代如同晨曦般照亮了每一个角落&#xff0c;万物互联&#xff0c;机器智能与人类智慧交织成一幅前所未有的图景。这座城市&#xff0c;既是科技的盛宴&#xff0c;也是人性与情感深刻反思的舞台。 寓言&#xff1a;《智光与心影》 在智能之…...

SpringCloud------Sentinel(微服务保护)

目录 雪崩问题 处理方式!!!技术选型 Sentinel 启动命令使用步骤引入依赖配置控制台地址 访问微服务触发监控 限流规则------故障预防流控模式流控效果 FeignClient整合Sentinel线程隔离-------故障处理线程池隔离和信号量隔离​编辑 两种方式优缺点设置方式 熔断降级-----…...

【无标题】Elasticsearch for windows

一、windows安装Elasticsearch 1、Elasticsearch&#xff1a;用于存储数据、计算和搜索&#xff1b; 2、Logstash/Beats&#xff1a;用于数据搜集 3、Kibana&#xff1a;用于数据可视化 以上三个被称为ELK&#xff0c;常用语日志搜集、系统监控和状态分析 Elasticsearch安…...

Yolo-World网络模型结构及原理分析(一)——YOLO检测器

文章目录 概要一、整体架构分析二、详细结构分析YOLO检测器1. Backbone2. Head3.各模块的过程和作用Conv卷积模块C2F模块BottleNeck模块SPPF模块Upsampling模块Concat模块 概要 尽管YOLO&#xff08;You Only Look Once&#xff09;系列的对象检测器在效率和实用性方面表现出色…...

WEB前端06-BOM对象

BOM浏览器对象模型 浏览器对象模型&#xff1a;将浏览器的各个组成部分封装成对象。是用于描述浏览器中对象与对象之间层次关系的模型&#xff0c;提供了独立于页面内容、并能够与浏览器窗口进行交互的对象结构。 组成部分 Window&#xff1a;浏览器窗口对象 Navigator&…...

Android11 framework 禁止三方应用开机自启动

Android11应用自启动限制 大纲 Android11应用自启动限制分析验证猜想&#xff1a;Android11 AOSP是否自带禁止三方应用监听BOOT_COMPLETED​方案禁止执行非系统应用监听到BOOT_COMPLETED​后的代码逻辑在执行启动时判断其启动的广播接收器一棍子打死方案&#xff08;慎用&#…...

Java | Leetcode Java题解之第263题丑数

题目&#xff1a; 题解&#xff1a; class Solution {public boolean isUgly(int n) {if (n < 0) {return false;}int[] factors {2, 3, 5};for (int factor : factors) {while (n % factor 0) {n / factor;}}return n 1;} }...

将AWS RDS MySQL实例从存储未加密改为加密的方案

问题描述&#xff1a; 因为AWS RDS官方文档【1】中已经明确说明&#xff0c;MySQL RDS的存储为EBS卷&#xff0c;用KMS进行RDS加密有如下限制&#xff1a; 您只能在创建RDS的时候&#xff0c;选择加密。对于已经创建的RDS实例&#xff0c;您无法将为加密的实例&#xff0c;直…...

nginx的配置:TLSv1 TLSv1.1 被暴露不安全

要在 Nginx 配置中禁用不安全的 SSL 协议&#xff08;如 TLSv1 和 TLSv1.1&#xff09;&#xff0c;并仅启用更安全的协议&#xff08;如 TLSv1.2 和 TLSv1.3&#xff09;&#xff0c;您可以更新您的 Nginx 配置文件。下面是一个示例配置&#xff1a; # 位于 Nginx 配置文件 (…...

揭开黑箱:目标检测中可解释性的重要性与实现

揭开黑箱&#xff1a;目标检测中可解释性的重要性与实现 在深度学习的目标检测任务中&#xff0c;模型的准确性虽然重要&#xff0c;但模型的决策过程是否透明也同样关键。可解释性&#xff08;Explainability&#xff09;是指模型能够为其预测结果提供清晰、可理解的解释。本…...

Mysql高价语句

一.高级语法的查询语句 1.排序语法&#xff08;默认的排序方式就是升序&#xff09;。 升序ASC&#xff1a;select * from test01 order by name; 降序DESC&#xff1a;select * from test01 order by name desc; 多个列排序&#xff1a;以多个列作为排序&#xff0c;只有第一…...

ArcGIS Pro SDK (九)几何 6 包络

ArcGIS Pro SDK &#xff08;九&#xff09;几何 6 包络 文章目录 ArcGIS Pro SDK &#xff08;九&#xff09;几何 6 包络1 构造包络2 构造包络 - 从 JSON 字符串3 合并两个包络4 与两个包络相交5 展开包络6 更新包络的坐标 环境&#xff1a;Visual Studio 2022 .NET6 ArcGI…...

单链表<数据结构 C版>

目录 概念 链表的单个结点 链表的打印操作 新结点的申请 尾部插入 头部插入 尾部删除 头部删除 查找 在指定位置之前插入数据 在任意位置之后插入数据 测试运行一下&#xff1a; 删除pos结点 删除pos之后结点 销毁链表 概念 单链表是一种在物理存储结构上非连续、非顺序…...

监控电脑进程,避免程序在打开前就已经在运行

文章目录 一、文章的目的&#xff08;适用于windows&#xff09;二、处理方式三、进程查看的内容在窗口端的演示四、附上代码例子四、通过os.kill的方式&#xff0c;再回到原来的表格时&#xff0c;会出现如下错误提示&#xff1a; 一、文章的目的&#xff08;适用于windows&am…...

【MySQL进阶篇】存储对象:视图、存储过程及触发器

一、视图 1、介绍 视图&#xff08;view&#xff09;是一种虚拟存在的表。视图中的数据并不在数据库中实际存在&#xff0c;行和列数据来定义视图的查询中使用的表&#xff08;基表&#xff09;&#xff0c;并且是在使用视图时动态生成的。 通俗的讲&#xff0c;视图只保存了…...

算法day05 master公式估算递归时间复杂度 归并排序 小和问题 堆排序

2.认识O(NlogN)的排序_哔哩哔哩_bilibili master公式 有这样一个数组&#xff1a;【0&#xff0c;4&#xff0c;2&#xff0c;3&#xff0c;3&#xff0c;1&#xff0c;2】&#xff1b;假设实现了这样一个sort()排序方法&#xff0c; 将数组二分成左右两等分&#xff0c;使用so…...

基于jeecgboot-vue3的Flowable流程仿钉钉流程设计器-支持VForm3表单的选择与支持

因为这个项目license问题无法开源&#xff0c;更多技术支持与服务请加入我的知识星球。 1、初始化的时候加载表单 /** 查询表单列表 */ const getFormList () > {listForm().then(res > formOptions.value res.result.records) } 2、开始节点的修改&#xff0c;增加表…...

【刷题汇总 -- 压缩字符串(一)、chika和蜜柑、 01背包】

C日常刷题积累 今日刷题汇总 - day0181、压缩字符串(一)1.1、题目1.2、思路1.3、程序实现 2、chika和蜜柑2.1、题目2.2、思路2.3、程序实现 3、 01背包3.1、题目3.2、思路3.3、程序实现 -- dp 4、题目链接 今日刷题汇总 - day018 1、压缩字符串(一) 1.1、题目 1.2、思路 读完…...

杭州网站建设培训班/百度免费下载安装百度

JAVA方法和本地方法 原地址http://blog.sina.com.cn/s/blog_5b9b4abe01016zw0.html JAVA中有两种方法&#xff1a;JAVA方法和本地方法 JAVA方法是由JAVA编写的&#xff0c;编译成字节码&#xff0c;存储在class文件中本地方法是由其它语言编写的&#xff0c;编译成和处理器相关…...

国内vps做网站备案/浏览器打开网站

文件管理&#xff1a;文件的物理结构1.文件的物理结构1.1 文件分配方式1.1.1 连续分配1.1.2 链接分配1.1.2.1 隐式链接1.1.2.2 显式链接1.1.3 索引分配1.文件的物理结构 文件系统层次结构 文件物理结构位于第五层 下图来自王道考研操作系统 逻辑结构&#xff1a;在用户看来&…...

wordpress缓存接口数据/直接打开百度

stitutestand constitute con 一起&#xff0c;共同&#xff0c;全部 stitutestand 站在一起 v. 组成&#xff0c;构成&#xff1b;成立&#xff0c;设立 A constitute B B is made up of A B is composed of A 注意这三组短语的异同 另外&#xff0c;它的两…...

网站建设哪家好公司/西地那非片能延时多久

虽说接触了好久的单片机或者说嵌入式开发&#xff0c;不过对于有些概念还是比较模糊&#xff0c;因此此系列将会从一些零碎的小知识点出发&#xff0c;慢慢的遍历整张嵌入式开发的地图。这次先来看一下中断向量表。至于为什么会提到中断向量表&#xff0c;主要是因为我自己在学…...

四川网站建设 招标/太原关键词排名提升

1-6 字符串 在Go语言里面&#xff0c;字符串属于不可变数值类型&#xff0c;也就是是当变量的值发生改变时&#xff0c;其内存地址发生改变。在Go语言内部字符串是使用指针指向UTF-8数组。 当然&#xff0c;与不可变数值类型相反&#xff0c;可变数值类型的意思就是&#xff0…...

网站建设中++模板/seo营销专员

概述&#xff1a; FTP服务器&#xff08;File Transfer Protocol Server&#xff09;是在互联网上提供文件存储和访问服务的计算机&#xff0c;它们依照FTP协议提供服务。 FTP&#xff08;File Transfer Protocol: 文件传输协议&#xff09;作用&#xff1a; Internet 上用来…...