昇思25天学习打卡营第13天 | mindspore 实现 ShuffleNet 图像分类
1. 背景:
使用 mindspore 学习神经网络,打卡第 13 天;主要内容也依据 mindspore 的学习记录。
2. 迁移学习介绍:
mindspore 实现 ShuffleNet 图像分类;
-
ShuffleNet 基本介绍:
ShuffleNetV1 是旷视科技提出的一种计算高效的 CNN 模型,设计目标是利用有限资源达到最好的模型精度;An Extremely Efficient Convolutional Neural Network for MobileDevices 文章链接 一文中提出的一种网络框架。 -
解决的问题:
降低模型的计算量,同时达到最好的模型精度,可以应用到移动端; -
创新点:
a. 逐点分组卷积 (Pointwise Group Convolution):
将输入的特征分组卷积;这样每个卷积核只处理输入特征图的一部分通道;这样,降低了参数量,同时,输出通道数等于卷积核数量;
Pointwise Group Convolution:在分组卷积基础上,令每一组卷积核都为 1*1;
b. 通道重排 (Channel Shuffle):
不同通道均匀分散重组,使网络在下一层处理不同通道信息;
Channel Shuffle 的逻辑:
3. 具体实现:
3.1 数据下载:
使用 CIFAR-10 数据集,共有60000张32*32的彩色图像,分为10个类别,每类有6000张图,数据集一共有50000张训练图片和10000张评估图片;
from download import downloadurl = "https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/datasets/cifar-10-binary.tar.gz"download(url, "./datasets-cifar10-bin", kind="tar.gz", replace=True)
3.2 数据前处理:
对 cifar10 数据集做处理
import mindspore as ms
import mindspore.dataset as ds
import mindspore.dataset.vision as vision
import mindspore.dataset.transforms as transforms
from mindspore import dtype as mstypedata_dir = "./datasets-cifar10-bin/cifar-10-batches-bin" # 数据集根目录
batch_size = 256 # 批量大小
image_size = 32 # 训练图像空间大小
workers = 4 # 并行线程个数
num_classes = 10 # 分类数量def create_dataset_cifar10(dataset_dir, usage, resize, batch_size, workers):data_set = ds.Cifar10Dataset(dataset_dir=dataset_dir,usage=usage,num_parallel_workers=workers,shuffle=True)trans = []if usage == "train":trans += [vision.RandomCrop((32, 32), (4, 4, 4, 4)),vision.RandomHorizontalFlip(prob=0.5)]trans += [vision.Resize(resize),vision.Rescale(1.0 / 255.0, 0.0),vision.Normalize([0.4914, 0.4822, 0.4465], [0.2023, 0.1994, 0.2010]),vision.HWC2CHW()]target_trans = transforms.TypeCast(mstype.int32)# 数据映射操作data_set = data_set.map(operations=trans,input_columns='image',num_parallel_workers=workers)data_set = data_set.map(operations=target_trans,input_columns='label',num_parallel_workers=workers)# 批量操作data_set = data_set.batch(batch_size)return data_set# 获取处理后的训练与测试数据集
dataset_train = create_dataset_cifar10(dataset_dir=data_dir,usage="train",resize=image_size,batch_size=batch_size,workers=workers)
step_size_train = dataset_train.get_dataset_size()dataset_val = create_dataset_cifar10(dataset_dir=data_dir,usage="test",resize=image_size,batch_size=batch_size,workers=workers)
step_size_val = dataset_val.get_dataset_size()
3.3 构建ShuffleNet 模块单元:
对于 ShuffleNet 模块单元,主要是 ShuffleNet 模块单元;
如论文中图所示:
相对于 ResNet 中的 Bottleneck 结构,有如下修改:
a. 将开始和最后的1 * 1 卷积模块(降维、升维)改成Point Wise Group Convolution;
b. 为了进行不同通道的信息交流,再降维之后进行Channel Shuffle;
c. 降采样模块中,3 * 3 的 Depth Wise Convolution的步长设置为2,长宽降为原来的一般,因此shortcut中采用步长为 2 的 3 * 3 平均池化,并把相加改成拼接。
- ShuffleV1 Block 代码如下:
class ShuffleV1Block(nn.Cell):def __init__(self, inp, oup, group, first_group, mid_channels, ksize, stride):super(ShuffleV1Block, self).__init__()self.stride = stridepad = ksize // 2self.group = groupif stride == 2:outputs = oup - inpelse:outputs = oupself.relu = nn.ReLU()branch_main_1 = [GroupConv(in_channels=inp, out_channels=mid_channels,kernel_size=1, stride=1, pad_mode="pad", pad=0,groups=1 if first_group else group),nn.BatchNorm2d(mid_channels),nn.ReLU(),]branch_main_2 = [nn.Conv2d(mid_channels, mid_channels, kernel_size=ksize, stride=stride,pad_mode='pad', padding=pad, group=mid_channels,weight_init='xavier_uniform', has_bias=False),nn.BatchNorm2d(mid_channels),GroupConv(in_channels=mid_channels, out_channels=outputs,kernel_size=1, stride=1, pad_mode="pad", pad=0,groups=group),nn.BatchNorm2d(outputs),]self.branch_main_1 = nn.SequentialCell(branch_main_1)self.branch_main_2 = nn.SequentialCell(branch_main_2)if stride == 2:self.branch_proj = nn.AvgPool2d(kernel_size=3, stride=2, pad_mode='same')def construct(self, old_x):left = old_xright = old_xout = old_xright = self.branch_main_1(right)if self.group > 1:right = self.channel_shuffle(right)right = self.branch_main_2(right)if self.stride == 1:out = self.relu(left + right)elif self.stride == 2:left = self.branch_proj(left)out = ops.cat((left, right), 1)out = self.relu(out)return outdef channel_shuffle(self, x):batchsize, num_channels, height, width = ops.shape(x)group_channels = num_channels // self.groupx = ops.reshape(x, (batchsize, group_channels, self.group, height, width))x = ops.transpose(x, (0, 2, 1, 3, 4))x = ops.reshape(x, (batchsize, num_channels, height, width))return x
3.4 构建 ShuffleNet V1 网络结构:
如 Table 1 所示:
代码如下:
class ShuffleNetV1(nn.Cell):def __init__(self, n_class=1000, model_size='2.0x', group=3):super(ShuffleNetV1, self).__init__()print('model size is ', model_size)self.stage_repeats = [4, 8, 4]self.model_size = model_sizeif group == 3:if model_size == '0.5x':self.stage_out_channels = [-1, 12, 120, 240, 480]elif model_size == '1.0x':self.stage_out_channels = [-1, 24, 240, 480, 960]elif model_size == '1.5x':self.stage_out_channels = [-1, 24, 360, 720, 1440]elif model_size == '2.0x':self.stage_out_channels = [-1, 48, 480, 960, 1920]else:raise NotImplementedErrorelif group == 8:if model_size == '0.5x':self.stage_out_channels = [-1, 16, 192, 384, 768]elif model_size == '1.0x':self.stage_out_channels = [-1, 24, 384, 768, 1536]elif model_size == '1.5x':self.stage_out_channels = [-1, 24, 576, 1152, 2304]elif model_size == '2.0x':self.stage_out_channels = [-1, 48, 768, 1536, 3072]else:raise NotImplementedErrorinput_channel = self.stage_out_channels[1]self.first_conv = nn.SequentialCell(nn.Conv2d(3, input_channel, 3, 2, 'pad', 1, weight_init='xavier_uniform', has_bias=False),nn.BatchNorm2d(input_channel),nn.ReLU(),)self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, pad_mode='same')features = []for idxstage in range(len(self.stage_repeats)):numrepeat = self.stage_repeats[idxstage]output_channel = self.stage_out_channels[idxstage + 2]for i in range(numrepeat):stride = 2 if i == 0 else 1first_group = idxstage == 0 and i == 0features.append(ShuffleV1Block(input_channel, output_channel,group=group, first_group=first_group,mid_channels=output_channel // 4, ksize=3, stride=stride))input_channel = output_channelself.features = nn.SequentialCell(features)self.globalpool = nn.AvgPool2d(7)self.classifier = nn.Dense(self.stage_out_channels[-1], n_class)def construct(self, x):x = self.first_conv(x)x = self.maxpool(x)x = self.features(x)x = self.globalpool(x)x = ops.reshape(x, (-1, self.stage_out_channels[-1]))x = self.classifier(x)return x
3.5 模型训练与评估:
- 模型训练:
本节用随机初始化的参数做预训练。首先调用ShuffleNetV1
定义网络,参数量选择"2.0x"
,并定义损失函数为交叉熵损失,学习率经过4轮的warmup
后采用余弦退火,优化器采用Momentum
。最后用train.model
中的Model
接口将模型、损失函数、优化器封装在model
中,并用model.train()
对网络进行训练。将ModelCheckpoint
、CheckpointConfig
、TimeMonitor
和LossMonitor
传入回调函数中,将会打印训练的轮数、损失和时间,并将ckpt文件保存在当前目录下。
import time
import mindspore
import numpy as np
from mindspore import Tensor, nn
from mindspore.train import ModelCheckpoint, CheckpointConfig, TimeMonitor, LossMonitor, Model, Top1CategoricalAccuracy, Top5CategoricalAccuracydef train():mindspore.set_context(mode=mindspore.PYNATIVE_MODE, device_target="Ascend")net = ShuffleNetV1(model_size="2.0x", n_class=10)loss = nn.CrossEntropyLoss(weight=None, reduction='mean', label_smoothing=0.1)min_lr = 0.0005base_lr = 0.05lr_scheduler = mindspore.nn.cosine_decay_lr(min_lr,base_lr,batches_per_epoch*250,batches_per_epoch,decay_epoch=250)lr = Tensor(lr_scheduler[-1])optimizer = nn.Momentum(params=net.trainable_params(), learning_rate=lr, momentum=0.9, weight_decay=0.00004, loss_scale=1024)loss_scale_manager = ms.amp.FixedLossScaleManager(1024, drop_overflow_update=False)model = Model(net, loss_fn=loss, optimizer=optimizer, amp_level="O3", loss_scale_manager=loss_scale_manager)callback = [TimeMonitor(), LossMonitor()]save_ckpt_path = "./"config_ckpt = CheckpointConfig(save_checkpoint_steps=batches_per_epoch, keep_checkpoint_max=5)ckpt_callback = ModelCheckpoint("shufflenetv1", directory=save_ckpt_path, config=config_ckpt)callback += [ckpt_callback]print("============== Starting Training ==============")start_time = time.time()# 由于时间原因,epoch = 5,可根据需求进行调整model.train(5, dataset, callbacks=callback)use_time = time.time() - start_timehour = str(int(use_time // 60 // 60))minute = str(int(use_time // 60 % 60))second = str(int(use_time % 60))print("total time:" + hour + "h " + minute + "m " + second + "s")print("============== Train Success ==============")if __name__ == '__main__':train()
- 模型评估:
from mindspore import load_checkpoint, load_param_into_netdef test():mindspore.set_context(mode=mindspore.GRAPH_MODE, device_target="Ascend")dataset = get_dataset("./dataset/cifar-10-batches-bin", 128, "test")net = ShuffleNetV1(model_size="2.0x", n_class=10)param_dict = load_checkpoint("shufflenetv1-5_390.ckpt")load_param_into_net(net, param_dict)net.set_train(False)loss = nn.CrossEntropyLoss(weight=None, reduction='mean', label_smoothing=0.1)eval_metrics = {'Loss': nn.Loss(), 'Top_1_Acc': Top1CategoricalAccuracy(),'Top_5_Acc': Top5CategoricalAccuracy()}model = Model(net, loss_fn=loss, metrics=eval_metrics)start_time = time.time()res = model.eval(dataset, dataset_sink_mode=False)use_time = time.time() - start_timehour = str(int(use_time // 60 // 60))minute = str(int(use_time // 60 % 60))second = str(int(use_time % 60))log = "result:" + str(res) + ", ckpt:'" + "./shufflenetv1-5_390.ckpt" \+ "', time: " + hour + "h " + minute + "m " + second + "s"print(log)filename = './eval_log.txt'with open(filename, 'a') as file_object:file_object.write(log + '\n')if __name__ == '__main__':test()
- 开始循环运行:
# 开始循环训练
print("Start Training Loop ...")for epoch in range(num_epochs):curr_loss = train(data_loader_train, epoch)curr_acc = evaluate(data_loader_val)print("-" * 50)print("Epoch: [%3d/%3d], Average Train Loss: [%5.3f], Accuracy: [%5.3f]" % (epoch+1, num_epochs, curr_loss, curr_acc))print("-" * 50)# 保存当前预测准确率最高的模型if curr_acc > best_acc:best_acc = curr_accms.save_checkpoint(network, best_ckpt_path)print("=" * 80)
print(f"End of validation the best Accuracy is: {best_acc: 5.3f}, "f"save the best ckpt file in {best_ckpt_path}", flush=True)
3.6 可视化模型预测:
import mindspore
import matplotlib.pyplot as plt
import mindspore.dataset as dsnet = ShuffleNetV1(model_size="2.0x", n_class=10)
show_lst = []
param_dict = load_checkpoint("shufflenetv1-5_390.ckpt")
load_param_into_net(net, param_dict)
model = Model(net)
dataset_predict = ds.Cifar10Dataset(dataset_dir="./dataset/cifar-10-batches-bin", shuffle=False, usage="train")
dataset_show = ds.Cifar10Dataset(dataset_dir="./dataset/cifar-10-batches-bin", shuffle=False, usage="train")
dataset_show = dataset_show.batch(16)
show_images_lst = next(dataset_show.create_dict_iterator())["image"].asnumpy()
image_trans = [vision.RandomCrop((32, 32), (4, 4, 4, 4)),vision.RandomHorizontalFlip(prob=0.5),vision.Resize((224, 224)),vision.Rescale(1.0 / 255.0, 0.0),vision.Normalize([0.4914, 0.4822, 0.4465], [0.2023, 0.1994, 0.2010]),vision.HWC2CHW()]
dataset_predict = dataset_predict.map(image_trans, 'image')
dataset_predict = dataset_predict.batch(16)
class_dict = {0:"airplane", 1:"automobile", 2:"bird", 3:"cat", 4:"deer", 5:"dog", 6:"frog", 7:"horse", 8:"ship", 9:"truck"}# 推理效果展示(上方为预测的结果,下方为推理效果图片)
plt.figure(figsize=(16, 5))
predict_data = next(dataset_predict.create_dict_iterator())
output = model.predict(ms.Tensor(predict_data['image']))
pred = np.argmax(output.asnumpy(), axis=1)
index = 0
for image in show_images_lst:plt.subplot(2, 8, index+1)plt.title('{}'.format(class_dict[pred[index]]))index += 1plt.imshow(image)plt.axis("off")
plt.show()
4. 相关链接:
- ShuffleNetV1 论文
- https://xihe.mindspore.cn/events/mindspore-training-camp
- https://gitee.com/mindspore/docs/blob/r2.3/tutorials/application/source_zh_cn/cv/shufflenet.ipynb
相关文章:
昇思25天学习打卡营第13天 | mindspore 实现 ShuffleNet 图像分类
1. 背景: 使用 mindspore 学习神经网络,打卡第 13 天;主要内容也依据 mindspore 的学习记录。 2. 迁移学习介绍: mindspore 实现 ShuffleNet 图像分类; ShuffleNet 基本介绍: ShuffleNetV1 是旷视科技提…...
C语言超市管理系统UI界面
以下是部分代码。需要源码的私信 #include<easyx.h> #include<stdio.h> #include<stdlib.h>#define width 1280 #define height 840 #define font_w 35 //字体宽度 #define font_h 90 //字体高度typedef struct node {char name[100];//名字char number[1…...
BUUCTF逆向wp [MRCTF2020]Xor
第一步 查壳,该题是32位,无壳。 第二步 跟进main,发现反汇编不了 通过下图我们可以发现一串类似字符串的东西 第三步 我们看一下汇编 我们可以得到这些信息:flag的长度为27(下面是对本条指令cmp edx 27指令的应用…...
Windows版MySQL5.7解压直用(如何卸载更换位置重新安装)
文章目录 停止mysql进程及服务迁移整个mysql文件夹删除data重启计算机重新安装 停止mysql进程及服务 net stop mysql mysqld -remove mysql迁移整个mysql文件夹 删除data 重启计算机 shutdown -r -t 0重新安装 https://blog.csdn.net/xzzteach/article/details/137723185...
详解数据结构之二叉树(堆)
详解数据结构之二叉树(堆) 树 树的概念 树是一个非线性结构的数据结构,它是由 n(n>0)个有限节点组成的一个具有层次关系的集合,它的外观形似一颗倒挂着的树,根朝上,叶朝下,所以称呼为树。每颗子树的根节点有且只…...
Linux----Mplayer音视频库的移植
想要播放视频音乐就得移植相关库到板子上 Mplayer移植需要依赖以下源文件:(从官网获取或者网上) 1、zlib-1.2.3.tar.gz :通用的内存空间的压缩库。 2、libpng-1.2.57.tar.gz :png格式图片的压缩或解压库 3、Jpegsrc.v9b.tar.gz : jpeg格式图片的压…...
STM32测测速---编码电机读取速度的计算
1、首先先了解一下计算的公式 速度计算: 轮胎每转一圈的脉冲数取决于编码器的分辨率,可由下面公式进行计算: PPR是电机的线数 以GA25-370电机为例。 图片来源:第四节:STM32定时器(4.JGA25-370霍尔编码器…...
【已解决】服务器无法联网与更换镜像源
目录 问题描述: 1.修改网卡的 DNS1 和 DNS2 2.修改DNS列表 3.重启网络服务 4.切换镜像源 4.1备份原镜像源 4.2下载阿里云镜像源 4.3替换无法使用的域名 4.4刷新软件包缓存 4.5其他镜像源 5.阿里云镜像源开发者社区说明 6.阿里云DNS网址 7.DNS域名服务器…...
android11 屏蔽usb通过otg转接口外接鼠标设备
硬件平台:QCS6125 软件平台:Android11 需求:Android设备通过接usb转接线连接鼠标功能屏蔽。 考虑到屏蔽的层面可以从两个层面去做,一个是驱动层面不识别,一个就是Android系统层面不识别加载,本篇只讲后者。…...
HAL库源码移植与使用之RTC时钟
实时时钟(Real Time Clock,RTC),本质是一个计数器,计数频率常为秒,专门用来记录时间。 普通定时器无法掉电运行!但RTC可由VBAT备用电源供电,断电不断时 这里讲F1系列的RTC 可以产生三个中断信号ÿ…...
GIT命令学习 一
📑打牌 : da pai ge的个人主页 🌤️个人专栏 : da pai ge的博客专栏 ☁️宝剑锋从磨砺出,梅花香自苦寒来 ☁️运维工程师的职责:监…...
VS+QT 打包可执行文件.exe
切换成release版本,同时更改项目属性中release配置下的各个属性,确保匹配 重新生成解决方案,将生成的.exe复制到一个空白文件夹中 执行: cd D:\QT\5.12.10\msvc2015_64\binwindeployqt C:\Users\DELL\Desktop\serials\MainWind…...
Android笔试面试题AI答之Activity(2)
答案仅供参考,大部分为文心一言AI作答 目录 1. 请介绍一下Activity 生命周期?1. 完全生命周期2. 可见生命周期3. 前台生命周期4. 配置更改5. 特殊场景 2. 请介绍一下横竖屏切换时Activity的生命周期变化?1.默认行为(未设置androi…...
来自Transformers的双向编码器表示(BERT) 通俗解释
来自Transformers的双向编码器表示(BERT) 目录 1. 从上下文无关到上下文敏感2. 从特定于任务到不可知任务3. BERT:把两个最好的结合起来4. BERT的输入表示5. 掩蔽语言模型(Masked Language Modeling)6. 下一句预测&am…...
代码随想录第十六天|贪心算法(2)
目录 LeetCode 134. 加油站 LeetCode 135. 分发糖果 LeetCode 860. 柠檬水找零 LeetCode 406. 根据身高重建队列 LeetCode 452. 用最少数量的箭引爆气球 LeetCode 435. 无重叠区间 LeetCode 763. 划分字母区间 LeetCode 56. 合并区间 LeetCode 738. 单调递增的数字 总…...
花几千上万学习Java,真没必要!(二十二)
1、final关键字: 测试代码1: package finaltest.com;public class FinalBasicDemo {public static void main(String[] args) {// final修饰基本数据类型变量final int number 5;// 尝试修改number的值,这将导致编译错误// number 10; // …...
在RK3568上如何烧录MAC?
这里我们用RKDevInfoWriteTool 1.1.4版本 下载地址:https://pan.baidu.com/s/1Y5uNhkyn7D_CjdT98GrlWA?pwdhm30 提 取 码:hm30 烧录过程: 1. 解压RKDevInfoWriteTool_Setup_V1.4_210527.7z 进入解压目录,双击运行RKDevInfo…...
1.30、基于卷积神经网络的手写数字旋转角度预测(matlab)
1、卷积神经网络的手写数字旋转角度预测原理及流程 基于卷积神经网络的手写数字旋转角度预测是一个常见的计算机视觉问题。在这种情况下,我们可以通过构建一个卷积神经网络(Convolutional Neural Network,CNN)来实现该任务。以下…...
Windows如何使用Python的sphinx
在Windows上使用Python的Sphinx进行文档渲染和呈现,可以遵循以下步骤进行操作: 安装Python:首先,确保你的Windows系统上已经安装了Python。你可以从Python的官方网站下载并安装适合你系统(32位或64位&…...
C++ STL nth_element 用法
一:功能 将一个序列分为两组,前一组元素都小于*nth,后一组元素都大于*nth, 并且确保第 nth 个位置就是排序之后所处的位置。即该位置的元素是该序列中第nth小的数。 二:用法 #include <vector> #include <a…...
【PostgreSQL教程】PostgreSQL 选择数据库
博主介绍:✌全网粉丝20W+,CSDN博客专家、Java领域优质创作者,掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域✌ 技术范围:SpringBoot、SpringCloud、Vue、SSM、HTML、Nodejs、Python、MySQL、PostgreSQL、大数据、物联网、机器学习等设计与开发。 感兴趣的可…...
C# —— HashTable
集合collections命名空间,专门进行一系列的数据存储和检索的类,主要包含了:堆栈、和队列、list、ArrayList、数组 HashTable 字典 storeList 排序列表等类 Array 数组 长度固定, 类型固定 通过索引值来进行访问 ArrayList动态数组,…...
LeetCode 第407场周赛个人题解
目录 100372. 使两个整数相等的位更改次数 原题链接 思路分析 AC代码 100335. 字符串元音游戏 原题链接 思路分析 AC代码 100360. 将 1 移动到末尾的最大操作次数 原题链接 思路分析 AC代码 100329. 使数组等于目标数组所需的最少操作次数 原题链接 思路分析 A…...
使用Django框架实现音频上传功能
数据库设计(models.py) class Music(models.Model):""" 音乐 """name models.CharField(verbose_name"音乐名字", max_length32)singer models.CharField(verbose_name"歌手", max_length32)# 本质…...
[路由器]IP-MAC的绑定与取消
背景:当公司的网络不想与外部人员进行共享,可以在路由器页面配置IP-MAC的绑定,让公司内部人员的手机和电脑的mac,才能接入到公司。第一步:在ARP防护中,启动IP-MAC绑定选项,必须启动仅允许IP-MAC…...
Idea配置远程开发
Idea配置远程开发 本篇博客介绍使用idea通过ssh连接ubuntu服务器进行开发 目录 Idea配置远程开发1.idae上点击file->Remote Development2.点击New Connection3.填写相关信息4.输入密码5.选择IDE版本和项目路径5.1 点击open an SSH terminal打开控制台5.2 依次执行命令 6.成…...
lua 实现 函数 判断两个时间戳是否在同一天
函数用于判断两个时间戳是否在同一天。下面是对代码的详细解释: ### 函数参数 - stampA 和 stampB:两个时间戳,用于比较。- resetInfo:一个可选参数,包含小时、分钟和秒数,用于调整时间戳。 ### 函数实现…...
工作纪实53-log4j日志打印文件隔离
在项目中,我有一堆业务日志需要打印,另一部分的日志,是没有格式的,需要被云平台离线解析并收集到kafka或者hdfs、hive等,需要将日志隔离打印到不同的文件 正常的log4j配置是下面这样的,配合Sl4j直接使用默认…...
7月21日,贪心练习
大家好呀,今天带来一些贪心算法的应用解题、 一,柠檬水找零 . - 力扣(LeetCode) 解析: 本题的贪心体现在对于20美元的处理上,我们总是优先把功能较少的10元作为找零,这样可以让5元用处更大 …...
FPGA DNA 获取 DNA_PORT
FPGA DNA DNA 是 FPGA 芯片的唯一标识, FPGA 都有一个独特的 ID ,也就是 Device DNA ,这个 ID 相当于我们的身份证,在 FPGA 芯片生产的时候就已经固定在芯片的 eFuse 寄存器中,具有不可修改的属性。在 xilinx 7series…...
哪些做调查问卷的网站/重庆百度地图
GIT的安装及上传代码到码云参考网址:https://blog.csdn.net/qq_34842671/article/details/70916587一:安装node.js搜索node.js官网,下载对应版本的node.js二:安装好之后,按住winR打开控制面板三:分别输入&a…...
网站的需求分析怎么写/网站设计规划
目录 1 问题描述 2 解决办法: (修改元数据的版本) 1 问题描述 启动了不同版本的集群,hive的元数据库启动报错 MetaException(message:Hive Schema version 2.1.0 does not match metastores schema version 1.2.0 Metastore is…...
无锡网站建设公司排名/重庆网站建设推广
开发移动应用是一项非常复杂的工作,但作为开发者,我们就是来解决这个复杂的。状态机(state machine)是一个很好的工具,它可以帮助我们简化开发中的复杂问题。因此,在本篇基于Swift语言的Xcode教程中&#x…...
做飞象金服的网站/湖南seo优化
我有一个溢出:跨越400%文档窗口宽度的自动容器。因此,我的页面上有一个水平滚动条。我在这个容器中也有多个div,它们有不同的左边位置。当我点击它们时,我需要获得每个容器的左侧位置。我使用$(this).offset()。left&a…...
政法门户网站建设情况/南京百度提升优化
前言提到数据库索引,大家肯定很熟悉,在日常工作中经常会接触到。这几天看了不少相关文章、书籍和课程。决定自己总结一篇文章,虽然我写的这篇文章肯定不如网上各路大神的好文,但是自己总结一遍总归记得更牢固。这应该也是一种好的…...
网站怎么做一盘优化排名/天猫店铺申请条件及费用
VC维含义的个人理解 有关于VC维可以在很多机器学习的理论中见到,它是一个重要的概念。在读《神经网络原理》的时候对一个实例不是很明白,通过这段时间观看斯坦福的机器学习公开课及相关补充材料,又参考了一些网络上的资料(主要是这…...