【目标检测】Anaconda+PyTorch配置
前言
本文主要介绍在windows系统上的Anaconda、PyTorch关键步骤安装,为使用yolo所需的环境配置完善。同时也算是记录下我的配置流程,为以后用到的时候能笔记查阅。
Anaconda
软件安装
Anaconda官网:https://www.anaconda.com/
另外,Anaconda下携带的conda的基本命令,建议可以查看菜鸟教程的介绍。Anaconda 教程
在上数官网完成安装后,进入系统自带命令行
Ctrl+R输入cmd或者 Anaconda携带的Anaconda Prompt (Anaconda)都可以,二选一即可,我通常选用的是系统自带的命令行。
可以尝试看看Anaconda有没有被安装
conda -V

创建环境
继续接着在命令行里操作。以下步骤仅供参考具体,按照个人配置。
-
创建环境,指定环境名词,以及python版本
conda create -n pytorch python=3.8
-
进入环境
conda activate pytorch
虚拟环境,共有两个包管理,是可以同时用的,分别是conda,pip。
PyTorch
PyTorch是开源的Python机器学习库,在刚才创建好的环境中下载。并且因为我的电脑是有GPU的,所以下载流程按照安装GPU版本的走。假如是要安装CPU版本的话,只要相关包能下载就行,用conda或pip关系不大。安装GPU的话,我这边是选择用pip。
下述命令的执行都是要确保在虚拟环境中执行,也就是上述的(pytorch) C:\Users\XYZ>
当然可以先到PyTorch官网,按自身环境在选择器中选择,就能给出相应下载命令。[PyTorch下载选择器](conda install pytorch torchvision torchaudio cpuonly -c pytorch)

CPU版本
换源命令,逐行执行:
# 添加清华镜像
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/peterjc123/
conda config --set show_channel_urls yes
下载命令,纯CPU版本
conda install pytorch torchvision torchaudio cpuonly
GPU版本
尝试过用conda安装,试过换源等还是CPU版本的,网上又说是什么没有对应的GPU版本之类。所以最后选择用pip安装。
-
首先在命令行中,查看CUDA最高支持版本

最高支持的CUDA版本为12.2
-
我看到在PyTorch下载选择器上有,CUDA12.1版本的相关,下载的选项,就打算下载那个。但当时电脑版本的CUDA版本不匹配,就要去英伟达官网下载所需的版本。(非必要,假如版本已经对应)
[英伟达-CUDA历史版本](CUDA Toolkit Archive | NVIDIA Developer)
可以下述命令查看当前电脑的CUDA版本
nvcc -V
-
下载PyTorch,安装选择选择器命令下载。

pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu121不过要是按照上述命令下载的话,因为是国外源下载极慢,而且文件是2G左右,要是小一点还能接收。我记得网上有相对应的办法,可以从下述网址:download.pytorch.org/whl/torch_stable.html选定相对应的torch,torchvision的GPU版本文件,手动下载,在基于
pip install 包名(该包一定要在目前命令行下,才能找到)导入。不过我嫌对应规则太绕了,就没看
我的方法是,起始大的特殊的只有torch这个GPU版本的文件,我先是调用(在创建好的虚拟环境中)
pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu121,它会给出要下载包的名称,Ctrl+C中止下载后,在复制名称到download.pytorch.org/whl/torch_stable.html网址搜索下载,在导入,在重新执行上述pip3 inst...(省略)命令,重新拉取下载,其它的包体积都较小,慢点都没事了,或者加个国内源都可以。 -
检查 GPU 驱动程序和 CUDA 是否已启用
检查 GPU 驱动程序和 CUDA 是否已启用并由 PyTorch 访问,请运行以下命令以返回是否启用了 CUDA 驱动程序:(相当于能启用GPU)
python import torch torch.cuda.is_available()
后续
这里,提下后续我在Pycharm上运行YOLO-V5的detect.py,出了问题:

后来,发现还torchvision没有按照pip命令,下载和torch对应的版本,可能还是CPU版本,就一直运行不起来。解决方法:回到Anaconda创建的虚拟环境中,卸载掉torchvision,还是去download.pytorch.org/whl/torch_stable.html调选对应的版本。
例如我上文中共在网址下载过这两个:
torch-2.3.1+cu121-cp38-cp38-win_amd64.whl
torchvision-0.18.1+cu121-cp38-cp38-win_amd64.whl
反正这里挺疑惑,我当时也正好截了图,明明下载对了,怎么后面又变回正常版本呢

相关文章:
【目标检测】Anaconda+PyTorch配置
前言 本文主要介绍在windows系统上的Anaconda、PyTorch关键步骤安装,为使用yolo所需的环境配置完善。同时也算是记录下我的配置流程,为以后用到的时候能笔记查阅。 Anaconda 软件安装 Anaconda官网:https://www.anaconda.com/ 另外&#…...
什么是离线语音识别芯片?与在线语音识别的区别
离线语音识别芯片是一种不需要联网和其他外部设备支持,上电即可使用的语音识别系统。它的应用场合相对单一,主要适用于智能家电、语音遥控器、智能玩具等,以及车载声控和一部分智能家居。离线语音识别芯片的特点包括小词汇量、…...
使用Diffusion Models进行街景视频生成
Diffusion Models专栏文章汇总:入门与实战 前言:街景图生成相当有挑战性,目前的文本到视频的方法仅限于生成有限范围的场景的短视频,文本到3D的方法可以生成单独的对象但不是整个城市。除此之外街景图对一致性的要求相当高&#x…...
UFO:革新Windows操作系统交互的UI聚焦代理
人工智能咨询培训老师叶梓 转载标明出处 人机交互的便捷性和效率直接影响着我们的工作和生活质量。尽管现代操作系统如Windows提供了丰富的图形用户界面(GUI),使得用户能够通过视觉和简单的点击操作来控制计算机,但随着应用程序功…...
scp免密复制文件
实现在服务器A和服务器B之间使用scp命令免密互相传输文件 1. 在服务器A中免密复制到服务器B 1.1 生成服务器A的公钥私钥 #在服务器A中执行 ssh-keygen -t rsa -P ""命令执行完毕会在服务器A的 ~/.ssh 目录下生成两个文件:id_rsa 和 id_rsa.pub 1.2 拷…...
Maven 的模块化开发示例
Maven 的模块化开发是一种非常有效的软件开发方式,它允许你将一个大型的项目分割成多个更小、更易于管理的模块(modules)。每个模块都可以独立地构建、测试和运行,这不仅提高了开发效率,也便于团队协作和项目的维护。以…...
通过QT进行服务器和客户端之间的网络通信
客户端 client.pro #------------------------------------------------- # # Project created by QtCreator 2024-07-02T14:11:20 # #-------------------------------------------------QT core gui network #网络通信greaterThan(QT_MAJOR_VERSION, 4): QT widg…...
【STM32 HAL库】DMA+串口
DMA 直接存储器访问 DMA传输,将数据从一个地址空间复制到另一个地址空间。-----“数据搬运工”。 DMA传输无需CPU直接控制传输,也没有中断处理方式那样保留现场和恢复现场,它是通过硬件为RAM和IO设备开辟一条直接传输数据的通道,…...
C#类型基础Part2-对象判等
C#类型基础Part2-对象判等 参考资料引用类型判等简单值类型判等复杂值类型判等 参考资料 《.NET之美-.NET关键技术深入解析》 引用类型判等 先定义两个类型,它们代表直线上的一个点,一个是引用类型class,一个是值类型struct public class…...
13.CSS 打印样式表 悬停下划线动画
CSS 打印样式表 虽然我们不经常从网上实际打印内容,但打印样式表不应被忽视。它们可以用来确保你的网站内容以一种易读和适合打印的方式呈现。这里有一个简单的、独特的打印样式表,你可以用它作为自己的基础: media print {page {size: A4;}body {margin: 0;padding: 0;}body, …...
C#基础:数据库分表的好处和实现方式
一、分表的好处: 1.提升查询速度:分表筛选后再拼接,而不是查大表,速度会显著提升 2.管理容易:根据业务需求,通常会按照时间或者空间来分表 3.提高并发性:降低锁竞争和查询阻塞的风险…...
基于3D开发引擎HOOPS平台的大型三维PLM系统的设计、开发与应用
产品生命周期管理(Product Lifecycle Management,PLM)系统在现代制造业中扮演着至关重要的角色。随着工业4.0和智能制造的推进,PLM系统从最初的CAD和PDM系统发展到现在的全面集成、协作和智能化的平台。本文将探讨基于HOOPS平台的…...
学习React(描述 UI)
React 是一个用于构建用户界面(UI)的 JavaScript 库,用户界面由按钮、文本和图像等小单元内容构建而成。React 帮助你把它们组合成可重用、可嵌套的 组件。从 web 端网站到移动端应用,屏幕上的所有内容都可以被分解成组件。在本章…...
mysql字符类型字段设置默认值为当前时间
-- 2024-07-22 10:22:20 select (DATE_FORMAT(CURRENT_TIMESTAMP, %Y-%m-%d %H:%i:%s)); ALTER TABLE tablename MODIFY COLUNN CREATE_DATE varchar (23) DEFAULT(DATE_FORMAT(CURRENT_TIMESTAMP, %Y-%m-%d %H:%i:%s)) COMMENT "创建日期;...
java题目之数字加密以及如何解密
public class Main6 {public static void main(String[] args) {// 某系统的数字密码(大于0),比如1983,采用加密方式进行传输//定义了一个静态数组int []arr{1,9,8,3};//1.加密//先给每位数加上5for (int i 0; i <arr.length …...
Linux基于CentOS7【yum】【vim】的基础学习,【普通用户提权】
目录 yum生态 什么是yum yum是如何得知目标服务器的地址和下载链接 vim vim模式 命名模式 光标移动 插入模式 i键插 a键插 o键插 底行模式 批量化注释 批量化去注释 创建vim配置文件 例子 高亮功能: 缩进功能: 符号位自动补齐功能…...
盛元广通实验室自动化生物样本库质量控制管理系统
随着我国生物医学研究的不断深入和精准医疗的快速发展,对高质量生物样本的需求日益增长。近年来,我国生物样本库建设取得了显著进展。各级政府、高校和医院纷纷投入资源建设生物样本库,推动了生物样本资源的有效整合和利用。生物样本库的质量…...
Java | 自制AWT单词猜一猜小游戏(测试版)
目录 游戏标题 开发过程 开发想法 技术栈 代码呈现 导包 核心代码 游戏标题 探索知识的迷宫,体验自制AWT单词猜一猜小游戏 在数字时代,学习可以是多彩的,游戏可以是智慧的。我们自豪地推出“单词猜猜猜”是一款结合了教育与娱乐的自制…...
docker搭建ES 8.14 集群
参考:【docker搭建es8集群kibana】_docker 安装生产级 es 8.14 集群-CSDN博客 1、之前已搭建一台单机版的dockerES集群 参见 Elasticsearch docker 安装_docker 安装es8.14.3-CSDN博客 2、现在需要重新搭建为docker ES集群 准备新搭建3个点 一、准备工作 提前开…...
自定义特征的智能演进:Mojo模型中的动态特征选择控制
自定义特征的智能演进:Mojo模型中的动态特征选择控制 在机器学习领域,特征选择是提升模型性能和泛化能力的关键步骤。Mojo模型,作为一种高效的模型部署方式,其对特征的动态选择和控制能力是实现高级机器学习应用的重要特性。本文…...
IGP(Interior Gateway Protocol,内部网关协议)
IGP(Interior Gateway Protocol,内部网关协议) 是一种用于在一个自治系统(AS)内部传递路由信息的路由协议,主要用于在一个组织或机构的内部网络中决定数据包的最佳路径。与用于自治系统之间通信的 EGP&…...
【Redis技术进阶之路】「原理分析系列开篇」分析客户端和服务端网络诵信交互实现(服务端执行命令请求的过程 - 初始化服务器)
服务端执行命令请求的过程 【专栏简介】【技术大纲】【专栏目标】【目标人群】1. Redis爱好者与社区成员2. 后端开发和系统架构师3. 计算机专业的本科生及研究生 初始化服务器1. 初始化服务器状态结构初始化RedisServer变量 2. 加载相关系统配置和用户配置参数定制化配置参数案…...
CentOS下的分布式内存计算Spark环境部署
一、Spark 核心架构与应用场景 1.1 分布式计算引擎的核心优势 Spark 是基于内存的分布式计算框架,相比 MapReduce 具有以下核心优势: 内存计算:数据可常驻内存,迭代计算性能提升 10-100 倍(文档段落:3-79…...
C++ 基础特性深度解析
目录 引言 一、命名空间(namespace) C 中的命名空间 与 C 语言的对比 二、缺省参数 C 中的缺省参数 与 C 语言的对比 三、引用(reference) C 中的引用 与 C 语言的对比 四、inline(内联函数…...
高危文件识别的常用算法:原理、应用与企业场景
高危文件识别的常用算法:原理、应用与企业场景 高危文件识别旨在检测可能导致安全威胁的文件,如包含恶意代码、敏感数据或欺诈内容的文档,在企业协同办公环境中(如Teams、Google Workspace)尤为重要。结合大模型技术&…...
GitHub 趋势日报 (2025年06月08日)
📊 由 TrendForge 系统生成 | 🌐 https://trendforge.devlive.org/ 🌐 本日报中的项目描述已自动翻译为中文 📈 今日获星趋势图 今日获星趋势图 884 cognee 566 dify 414 HumanSystemOptimization 414 omni-tools 321 note-gen …...
有限自动机到正规文法转换器v1.0
1 项目简介 这是一个功能强大的有限自动机(Finite Automaton, FA)到正规文法(Regular Grammar)转换器,它配备了一个直观且完整的图形用户界面,使用户能够轻松地进行操作和观察。该程序基于编译原理中的经典…...
均衡后的SNRSINR
本文主要摘自参考文献中的前两篇,相关文献中经常会出现MIMO检测后的SINR不过一直没有找到相关数学推到过程,其中文献[1]中给出了相关原理在此仅做记录。 1. 系统模型 复信道模型 n t n_t nt 根发送天线, n r n_r nr 根接收天线的 MIMO 系…...
Springboot社区养老保险系统小程序
一、前言 随着我国经济迅速发展,人们对手机的需求越来越大,各种手机软件也都在被广泛应用,但是对于手机进行数据信息管理,对于手机的各种软件也是备受用户的喜爱,社区养老保险系统小程序被用户普遍使用,为方…...
Java线上CPU飙高问题排查全指南
一、引言 在Java应用的线上运行环境中,CPU飙高是一个常见且棘手的性能问题。当系统出现CPU飙高时,通常会导致应用响应缓慢,甚至服务不可用,严重影响用户体验和业务运行。因此,掌握一套科学有效的CPU飙高问题排查方法&…...
