当前位置: 首页 > news >正文

【GPT-4】GPT-4 相关内容总结

目录

​编辑

官网介绍

GPT-4 内容提升总结

GPT-4 简短版总结

GPT-4 基础能力

GPT-4 图像处理

GPT-4 技术报告

训练过程

局限性

GPT-4 风险和应对措施

开源项目:OpenAI Evals

申请 GPT-4 API

API的介绍以及获取


官网介绍

官网:GPT-4

API候补名单:GPT-4 API waitlist

没开通Plus的用户还没办法体验到

  1. GPT-4 是 OpenAI 最先进的系统,可产生更安全、更有用的响应。

我们创建了 GPT-4,这是 OpenAI 努力扩展深度学习的最新里程碑。GPT-4 是一个大型多模态模型(接受图像和文本输入,发出文本输出),虽然在许多现实世界场景中的能力不如人类,但在各种专业和学术基准上表现出人类水平的表现。

  1. GPT-4 可以更准确地解决难题,这要归功于其更广泛的常识和解决问题的能力。

  • 创造力:GPT-4 比以往任何时候都更具创造性和协作性。它可以生成、编辑并与用户一起迭代创意和技术写作任务,例如创作歌曲、编写剧本或学习用户的写作风格。

  • 视觉输入:GPT-4 可以接受图像作为输入并生成说明、分类和分析。

  • 更长的上下文:GPT-4 能够处理超过 25,000 个单词的文本,允许使用长格式内容创建、扩展对话以及文档搜索和分析等用例。

  1. GPT-4 的高级推理能力超越了 ChatGPT。

  2. GPT-4 通过在测试者中获得更高的近似百分位数来优于 ChatGPT。

  3. 遵循 GPT、GPT-2 和 GPT-3 的研究路径,我们的深度学习方法利用更多数据和更多计算来创建越来越复杂和强大的语言模型

  4. 安全与对齐

  • 通过人工反馈进行训练:我们纳入了更多的人工反馈,包括 ChatGPT 用户提交的反馈,以改进 GPT-4 的行为。我们还与 50 多位专家合作,在 AI 安全和保障等领域获得早期反馈。

  • 从现实世界的使用中不断改进:我们已经将我们以前模型在现实世界中使用的经验教训应用到 GPT-4 的安全研究和监控系统中。与 ChatGPT 一样,随着越来越多的人使用它,我们将定期更新和改进 GPT-4。

  • GPT-4 辅助的安全研究:GPT-4 的高级推理和指令遵循能力加快了我们的安全工作。我们使用 GPT-4 帮助创建用于模型微调的训练数据,并在训练、评估和监控过程中迭代分类器。

  1. 与使用 GPT-4 构建的新产品的组织合作

  • Duolingo

  • Be My Eyes

  • Stripe

  • Morgan Stanley

  • Khan Academy

  • Government of Iceland

GPT-4 内容提升总结

  • 重点强化了创作能力,作曲,写小说,能够生成歌词、创意文本、实现风格变化等

  • 强大的识图能力,除本身带了对于图片 OCR 外,还有对位置和细节的理解能力

  • 增加了对于长文本的处理能力:文字输入限制提升至 2.5 万字

  • 回答准确性显著提高

  • 多了一种新的交互方式,就是对于图片的理解

GPT-4 简短版总结

  • GPT-4是一个大型多模态模型(Large Multimodal Model),能够接受图像和文本输入,并输出文本。

  • 实验表明,GPT-4 在各种专业和学术考试中表现出了与人类水平相当的性能(human-level performance)。例如,它通过了模拟律师考试,且分数在应试者的前 10% 左右;相比之下,GPT-3.5 的得分在倒数 10% 左右。

  • GPT-4的训练稳定性是史无前例的,这得益于对抗性测试计划和来自于ChatGPT的经验教训,对 GPT-4 进行迭代调整,从而在真实性、可控性等方面取得了有史以来最好的结果。

  • 在过去的两年里,OpenAI重建了整个深度学习堆栈,并与Azure共同设计了一台超级计算机以便于应付他们的工作负载。 将继续专注于可靠的扩展,进一步完善方法,以帮助其实现更强大的提前预测性能和规划未来的能力,这对安全至关重要。

  • OpenAI首先发布了GPT-4的文本输入功能,图像输入功能敬请期待

  • OpenAI还开源了OpenAI Evals,这是他们的自动化评估AI模型性能的框架,任何人都可以提交他们模型的缺陷以帮助改进。

  • OpenAI 正在通过 ChatGPT 和 API(有候补名单)发布 GPT-4 的文本输入功能。图像输入功能方面,为了获得更广泛的可用性,OpenAI 正在与其他公司展开合作。

  • OpenAI 还在为机器学习模型设计的传统基准上评估了 GPT-4。GPT-4 大大优于现有的大型语言模型,以及大多数 SOTA 模型

GPT-4 基础能力

  • GPT-4 是一个多模态大模型,支持接受图像和文本输入,输出文本。

  • 虽然没一步到位,把音视频也覆盖上,但如果能把图像与文本这两块做好,相信其应用潜力无限。

  • 即便 GPT-4 在许多现实世界场景中能力不如人类,但在各种专业和学术基准上的表现,还是超过了人类的平均水平。这里有一个数据是,在律师模拟考中,GPT-4 的成绩排在应试生的前 10% 中,而此前发布的 GPT-3.5,则在倒数 10% 的行列。参加的多种不同领域的专业应试,能够排到多靠前的位置。

  • 在团队进行的多个 GPT-4 与 GPT-3.5 的考试测试中,发现这两个模型间存在很微妙的差异。当任务的复杂性足够高时,GPT-4 比 GPT-3.5 更可靠、更有创意,并且能够处理更细微的指令。

在 GPT-4 发布之前,Open AI 团队花了 6 个月的时间 ,使用对抗性测试程序,以及从 ChatGPT 得到的经验教训,对 GPT-4 进行了迭代调整 ,进而在其真实性、可操控性等方面取得了有史以来最好的结果。

在与当前机器学习模型进行基准评估对比后,GPT-4 大大优于现有的大型语言模型,以及大多数最先进的 (SOTA) 模型。

GPT-4 图像处理

GPT-4 本次最为令人看重的,还是它接受与处理图像的具体能力。

在官方报告中,团队提供了多个实际交互示例。

还在研究阶段,不公开。

详细版:GPT-4可以接受文本和图像输入,并且这两个是可以掺杂着用,它允许你用跟之前文本一样的使用方式。

一共有7个例子,总结起来,它可以识别搞笑图片,可以做复杂的物理化学之类的题目,可以做看图题,可以读论文,可以识别meme图片,总之,非常的强,可惜还不能开放使用。

理解图片

识别与解析图片内容

解析报表图片并进行汇总

直接回答图片中包含的提问内容

不过,GPT-4 跟 GPT-3.5 类似,对训练数据中断后(2021 年 9 月)所发生的事情不太了解,也会犯一些在我们看来很简单的推理性错误,给用户提供不合理的建议,以及在生成的代码中引入安全漏洞。

对于这些潜在性的危险因素,团队也聘请了来自多个不同行业的专家对模型进行了优化调整,但是其具体效果,还需要等后面场景应用较为广泛后,才能得出结论。

GPT-4 技术报告

OpenAI 公开的技术报告中,不包含任何关于模型架构、硬件、算力等方面的更多信息。

下面是稍微具体一点的技术报告 https://cdn.openai.com/papers/gpt-4.pdf:

  1. GPT-3.5/ChatGPT 技术路线完全相同。GPT-4 is a Transformer-style model pre-trained to predict the next token in a document, using both publicly available data (such as internet data) and data licensed from third-party providers. The model was then fine-tuned using Reinforcement Learning from Human Feedback (RLHF).

  2. 用一系列 alignment 方案来确保 GPT-4 输出的安全性。The post-training alignment process results in improved performance on measures of factuality and adherence to desired behavior.

  3. 用千分之一的计算量去预测 GPT-4 在一定计算规模下的性能,不用花时间训练大模型去探索,即 Predictable Scaling。A core component of this project was developing infrastructure and optimization methods that behave predictably across a wide range of scales. This allowed us to accurately predict some aspects of GPT-4’s performance based on models trained with no more than 1/1,000th the compute of GPT-4.

  4. 很想看到 OpenAI 是如何做到 Multi-modal GPT 的,我大致是这么猜的:GPT-4 的训练方法应当与最近微软发布的 KOSMOS-1 相同 (Language Is Not All You Need: Aligning Perception with Language Models)。预训练阶段,输入任意顺序的文本和图像,图像经过 vision encoder (如 ViT,CLIP ViT)成 embedding,文本经过 text tokenizer 也成 embedding,组成 multimodal sentence embedding,训练目标仍然是 next-token generation。KOSMOS-1 数据从哪来,直接爬网页训,网页里有图有文字。别看 KOSMOS-1 性能比较拉,那是因为它参数量少,就 1.3 B。同样的方式放到 GPT-4 的参数规模,能成大事。

  5. GPT-4参数量,没有找到相关描述。

训练过程

与之前的 GPT 模型一样,GPT-4 基础模型经过训练可以预测文档中的下一个单词。OpenAI 使用公开可用的数据(例如互联网数据)以及已获得许可的数据进行训练。训练数据是一个网络规模的数据语料库,包括数学问题的正确和错误解决方案、弱推理和强推理、自相矛盾和一致的陈述,以及各种各样的意识形态和想法。

因此,当提出问题时,基础模型的回应可能与用户的意图相去甚远。为了使其与用户意图保持一致,OpenAI 依然使用强化学习人类反馈 (RLHF) 来微调模型的行为。请注意,该模型的能力似乎主要来自于预训练过程 ——RLHF 不会提高考试成绩(甚至可能会降低它)。但是模型的控制来自后训练过程 —— 基础模型甚至需要及时的工程设计来回答问题。

GPT-4 的一大重点是建立了一个可预测扩展的深度学习栈。主要原因是,对于像 GPT-4 这样的大型训练,进行广泛的特定模型调整是不可行的。团队开发了基础设施和优化,在多种规模下都有可预测的行为。为了验证这种可扩展性,他们提前准确地预测了 GPT-4 在内部代码库(不属于训练集)上的最终损失,方法是通过使用相同的方法训练的模型进行推断,但使用的计算量为 1/10000。

局限性

尽管功能已经非常强大,但 GPT-4 仍与早期的 GPT 模型具有相似的局限性,其中最重要的一点是它仍然不完全可靠。OpenAI 表示,GPT-4 仍然会产生幻觉、生成错误答案,并出现推理错误。

目前,使用语言模型应谨慎审查输出内容,必要时使用与特定用例的需求相匹配的确切协议(例如人工审查、附加上下文或完全避免使用) 。

总的来说,GPT-4 相对于以前的模型(经过多次迭代和改进)已经显著减轻了幻觉问题。在 OpenAI 的内部对抗性真实性评估中,GPT-4 的得分比最新的 GPT-3.5 模型高 40%:

GPT-4 风险和应对措施

  • GPT-4 的训练在去年 8 月完成,剩下的时间都在进行微调提升,以及最重要的去除危险内容生成的工作。

  • OpenAI一直在对GPT-4进行迭代,以使其更加安全。

  • GPT-4与以前的模型一样具有风险,但由于其额外的能力,从而会导致新的风险。

  • 邀请了50多名专家对模型进行对抗测试,以提高模型的安全性能。

  • GPT-4在RLHF训练过程中加入了额外的安全奖励信号,通过训练模型拒绝对此类内容的请求来减少有害的输出。

  • 为了防止模型拒绝有效请求,收集了多样化的数据集,并在允许和不允许的类别上应用安全奖励信号。

  • 缓解措施显著提高了GPT-4的安全性能,例如将模型对于不允许内容请求的响应率降低了82%。 对敏感请求(如医疗建议和自我伤害)的响应符合政策的频率提高了 29%。

开源项目:OpenAI Evals

为了让开发者能更好的评测 GPT-4 的优缺点,OpenAI 的技术团队还开源了 OpenAI Evals 项目,可用于自动评估 AI 模型性能的框架,以便用户能更专业的指导团队,进一步优化与改进模型。

该项目具有以下功能特性:

  • 使用数据集生成提示;

  • 衡量 OpenAI 模型提供的补全质量;

  • 比较不同数据集和模型的性能。

GitHub:https://github.com/openai/evals

申请 GPT-4 API

  • GPT-4 发布后,OpenAI 直接升级了 ChatGPT。ChatGPT Plus 订阅者可以在 chat.openai.com 上获得具有使用上限的 GPT-4 访问权限。

  • OpenAI 已面向开发者开放 GPT-4 API 的申请通道,大家想提前使用的话,可以先提交申请,进入 waitlist 中等待通过。(GPT-4 API 它使用与 gpt-3.5-turbo 相同的 ChatCompletions API)。

  • 申请通道:https://openai.com/waitlist/gpt-4-api

  • ChatGPT Plus 订阅会员,则可以直接获得 GPT-4 的试用权限,无需等待。不过有一定限制,在 4 小时内,最多只能发布 100 条信息。获得访问权限后,用户当前还是只能向 GPT-4 模型发出纯文本请求,图像请求可能得等稍晚一些时间才对外开放。

API的介绍以及获取

  • 通过注册waitlist,开发人员可以获得访问 GPT-4 API 的权限

  • AI研究员可以通过Researcher Access Program申请补贴访问

  • 获得访问权限后,可以向 GPT-4 模型发出纯文本请求(图像输入仍处于有限的 alpha 阶段)

  • 价格为每 1k 个 prompt tokens 0.03 美元和每 1k 个 completion tokens 0.06 美元

  • 默认速率限制为每分钟 40k 个tokens和每分钟 200 个tokens 请求

  • GPT-4 的上下文长度为 8,192 个tokens

  • 有限访问 GPT-4-32k(32,768-上下文版本)的价格为:每 1k prompt token 0.06 美元和每 1k completion token 0.12 美元

  • 处理对 8K 和 32K 引擎的请求的速率可能会不同,因此可能会在不同时间获得对它们的访问权限

相关文章:

【GPT-4】GPT-4 相关内容总结

目录 ​编辑 官网介绍 GPT-4 内容提升总结 GPT-4 简短版总结 GPT-4 基础能力 GPT-4 图像处理 GPT-4 技术报告 训练过程 局限性 GPT-4 风险和应对措施 开源项目:OpenAI Evals 申请 GPT-4 API API的介绍以及获取 官网介绍 官网:GPT-4 API候…...

5.springcloud微服务架构搭建 之 《springboot集成Hystrix》

1.springcloud微服务架构搭建 之 《springboot自动装配Redis》 2.springcloud微服务架构搭建 之 《springboot集成nacos注册中心》 3.springcloud微服务架构搭建 之 《springboot自动装配ribbon》 4.springcloud微服务架构搭建 之 《springboot集成openFeign》 目录 1.项目…...

【工作中问题解决实践 七】SpringBoot集成Jackson进行对象序列化和反序列化

去年10月份以来由于公司和家里的事情太多,所以一直没有学习,最近缓过来了,学习的脚步不能停滞啊。回归正题,其实前年在学习springMvc的时候也学习过Jackson【Spring MVC学习笔记 五】SpringMVC框架整合Jackson工具,但是…...

香港服务器遭受DDoS攻击后如何恢复运行?

​  您是否发现流量异常上升?您的网站突然崩溃了吗?当您注意到这些迹象时,可能是在陷入了DDoS攻击的困境,因而,当开始考虑使用香港服务器时,也应该考虑香港服务器设备受DDoS攻击时,如何从中恢复。 在 DDoS 攻击香港…...

【Hive】配置

目录 Hive参数配置方式 参数的配置方式 1. 文件配置 2. 命令行参数配置 3. 参数声明配置 配置源数据库 配置元数据到MySQL 查看MySQL中的元数据 Hive服务部署 hiveserver2服务 介绍 部署 启动 远程连接 1. 使用命令行客户端beeline进行远程访问 metastore服务 …...

IP-GUARD如何强制管控电脑设置开机密码要符合密码复杂度?

如何强制管控电脑设置开机密码要符合密码复杂度? 7 可以在控制台-【策略】-【定制配置】,添加一条配置,开启系统密码复杂度检测。 类别:自定义 关键字:bp_password_complexity 内容:1 效果图:...

剑指 Offer II 031. 最近最少使用缓存

题目链接 剑指 Offer II 031. 最近最少使用缓存 mid 题目描述 运用所掌握的数据结构,设计和实现一个 LRU(Least Recently Used,最近最少使用) 缓存机制 。 实现 LRUCache类: LRUCache(int capacity)以正整数作为容量 capacity初始化 LRU缓…...

44岁了,我从没想过在CSDN创作2年,会有这么大收获

1998年上的大学,02年毕业,就算从工作算起,我也有20余年的码龄生涯了。 但正式开启博文的写作,却是2021年开始的,差不多也就写了2年的博客,今天我来说说我在CSDN的感受和收获。 我是真的没想到,…...

相位相参信号源的设计--示波器上的信号不稳定,来回跑?

目录乱跑的波形边沿触发触发方式外部触发相参与非相参相位相参的射频信号源样机外观与内部设计软件设计上位机软件信号源使用方法PWM触发信号射频信号的时域波形射频信号的频谱输出功率在示波器的实际使用当中波形在示波器的时域上乱跑,左右移动,定不下来…...

Spring Boot 整合 RabbitMQ 多种消息模式

Spring Boot 整合 RabbitMQ 多种消息模式 准备工作集成 RabbitMQ发布/订阅模式点对点模式主题模式总结Spring Boot 是一个流行的 Java 应用程序开发框架,而 RabbitMQ 是一款可靠的消息队列软件。将 Spring Boot 和 RabbitMQ 结合起来可以帮助我们轻松地实现异步消息传递。Rabb…...

node多版本控制

前言 最近在折腾Python,并将node升级至v18.14.2。突然发现一个旧项目无法运行,也无法打包,里面的node-sass报错,显然这是因为node版本过高导致的。 将node版本降低至以前的v14.16.0,果然立马就能正常运行。 存在不同…...

Redis set集合

Redis set (集合)遵循无序排列的规则,集合中的每一个成员(也就是元素,叫法不同而已)都是字符串类型,并且不可重复。Redis set 是通过哈希映射表实现的,所以它的添加、删除、查找操作…...

漫画:什么是希尔排序算法?

希尔排序(ShellSort)是以它的发明者Donald Shell名字命名的,希尔排序是插入排序的改进版,实现简单,对于中等规模数据的性能表现还不错 一、排序思想 前情回顾:漫画:什么是插入排序算法&#xf…...

问卷工具选择要看哪些方面?

通常来讲,我们在使用一款问卷制作工具制作问卷时会有哪些需求呢? 一、用户需求 1、操作简单,易上手。 2、能够满足用户个性化的需求。 3、提供多语言服务。 4、能够帮助发布以及数据收集。 5、简化数据分析 市面上的问卷调查制作工具都…...

Qt之QPainter绘制多个矩形/圆形(含源码+注释)

一、绘制示例图 下图绘制的是矩形对象,但是将绘制矩形函数(drawRect)更改为绘制圆形(drawEllipse)即可绘制圆形。 二、思路解释 绘制矩形需要自然要获取矩形数据,因此通过鼠标事件获取每个矩形的rect数…...

介绍两款红队常用的信息收集组合工具

介绍两款红队常用的信息收集组合工具1.Ehole本地识别FOFA识别结果输出2.AlliN1.Ehole EHole(棱洞)3.0 红队重点攻击系统指纹探测工具 EHole是一款对资产中重点系统指纹识别的工具,在红队作战中,信息收集是必不可少的环节,如何才能从大量的资…...

类ChatGPT国产大模型ChatGLM-6B,单卡即可运行

2023年3月14日GPT4又发布了,在ChatGPT发展如火如荼的当下,我们更应该关注国内的进展,今天将分享一个清华大学基于GLM-130B模型开发的类似ChatGPT的ChatGLM-6B模型,ChatGLM-6B 是一个开源的、支持中英双语的对话语言模型&#xff0…...

vue的diff算法?

文章目录是什么比较方式原理分析Diff算法的步骤:首尾指针法比对顺序:是什么 diff 算法是一种通过同层的树节点进行比较的高效算法 其有两个特点: 比较只会在同层级进行, 不会跨层级比较 在diff比较的过程中,循环从两边向中间比较…...

C++ | 对比inline内联函数和宏的不同点

文章目录一、前言二、宏的优缺点分析1、概念回顾2、宏的缺点3、宏的优点三、inline内联函数1、概念2、特性①:空间换时间🎁趣味杂谈:庞大的游戏更新包3、特性②:inline实现机制4、特性③:inline的声明与定义反汇编观察…...

面试官问 : ArrayList 不是线程安全的,为什么 ?(看完这篇,以后反问面试官)

前言 金三银四 ? 也许,但是。 近日,又收到金三银四一线作战小队成员反馈的战况 : 我不管你从哪里看的面经,但是我不允许你看到我这篇文章之后,还不清楚这个面试问题。 本篇内容预告: Array…...

Linux串口应用编程

一、 串口API 在Linux系统中,操作设备的统一接口就是:open/ioctl/read/write。 对于UART,又在ioctl之上封装了很多函数,主要是用来设置行规程。 所以对于UART,编程的套路就是: open设置行规程,比如波特率、数据位、停止位、检验位、RAW模式、一有数据就返回read/write 怎么设置…...

java程序员学前端-HTML篇

HTML 与 CSS HTML 是什么&#xff1a;即 HyperText Markup language 超文本标记语言&#xff0c;咱们熟知的网页就是用它编写的&#xff0c;HTML 的作用是定义网页的内容和结构。 HyperText 是指用超链接的方式组织网页&#xff0c;把网页联系起来Markup 是指用 <标签>…...

【云原生|Docker】03-docker的基础操作

目录 前言 查询相关 容器相关 1. 容器启动 2. 容器关闭 3. 重启容器 4. 暂停容器 5. 删除容器 6. docker run参数汇总 镜像相关 1. 镜像推送至仓库 2. docker image load使用 3. docker image import使用 4. dokcer image参数汇总 前言 容器的命…...

vue2+高德地图web端开发使用

创建vue2项目我们创建一个vue2项目&#xff0c;创建vue2项目就不用再多说了吧&#xff0c;使用“vue create 项目名 ”创建即可注册高德地图高德地图官网地址&#xff1a;https://lbs.amap.com/如果是第一次使用&#xff0c;点击注册然后进入我们的控制台注册完之后进入控制台&…...

01背包问题c++

问题 问题介绍 有 N 种物品和一个容量是 V 的背包&#xff0c;每种物品都有无限件可用。 第 i 种物品的体积是 vi&#xff0c;价值是 wi。 求解将哪些物品装入背包&#xff0c;可使这些物品的总体积不超过背包容量&#xff0c;且总价值最大。 输出最大价值。 输入格式 第…...

ZYNQ硬件调试-------day2

ZYNQ硬件调试-------day2 1.ILA&#xff08;Integrated Logic Analyzer &#xff09; 监控逻辑内部信号和端口信号;可以理解为输出。可单独使用 2.VIO&#xff08;Virtual Input/Output &#xff09; 实时监控和驱动逻辑内部信号和端口信号&#xff0c;可以理解为触发输入。不可…...

JavaScript中Promise的简单使用及其原理

Promise是ES6最重要的特性之一&#xff0c;今天来系统且细致的研究一下Promise的用法以及原理。 按照我往常的理解&#xff0c;Promise是一个构造函数&#xff0c;有all、resolve、reject、then、catch等几个方法&#xff0c;一般情况下&#xff0c;在涉及到异步操作时才会用到…...

SpringBoot RabbitMQ 延时队列取消订单【SpringBoot系列14】

SpringCloud 大型系列课程正在制作中&#xff0c;欢迎大家关注与提意见。 程序员每天的CV 与 板砖&#xff0c;也要知其所以然&#xff0c;本系列课程可以帮助初学者学习 SpringBooot 项目开发 与 SpringCloud 微服务系列项目开发 1 项目准备 SpringBoot 雪花算法生成商品订单…...

【论文阅读 WWW‘23】Zero-shot Clarifying Question Generation for Conversational Search

文章目录前言MotivationContributionsMethodFacet-constrained Question GenerationMultiform Question Prompting and RankingExperimentsDatasetResultAuto-metric evaluationHuman evaluationKnowledge前言 最近对一些之前的文章进行了重读&#xff0c;因此整理了之前的笔记…...

ouc 网络安全实验 格式化字符串漏洞

文章目录要求lab1lab2lab3lab4结语因为当时自己做实验的时候出现了很多疑问不会解决&#xff0c;在网上看到了一位大佬 王森ouc 的专栏文章解决了很多问题&#xff0c;也学到了很多知识和解决问题的方法&#xff0c;现在把我的实验解决方法也发上来&#xff0c;希望有不会的同…...

珠海品牌机械网站建设/百度seo和sem

前言 Google 在 Android 5.0 后推出了官方的侧滑实现&#xff0c;在谷歌爸爸自家 App 中被大量运用&#xff0c;以前需要自己写&#xff0c;现在好了官方版本直接用轮子&#xff0c;接下来我们来看看怎样实现。 实现效果 目录 布局文件Java 代码 布局文件 在 DrawerLayout…...

本网站建设中/关键词网站排名查询

对于程序中一些常量如字符串&#xff0c; 实数等&#xff0c; C中经常用的方法&#xff0c; 是定义全局常量&#xff1b; 或者把所有意义相近的常量用一个单例类收集起来。 QML是类JSON的标识性语言&#xff0c; 使用js 语法去操作对象。 在QML中定义常量稍稍麻烦些。 总结起来…...

上海平台网站建设公司排名/上海seo优化服务公司

一、 问题在对master、worker节点安装kubelet kubeadm时刚好k8s的版本更新&#xff0c;之前的安装是采用默认的安装&#xff0c;为指定版本号&#xff0c;造成worker节点加入到master节点时&#xff0c;node节点一直都是notReady状态。二、 安装指定版本号2.1 查看所以版本号$ …...

网站简易后台/中山网站建设

1.概述 存储过程也是一种PL/SQL块&#xff0c;是存入数据库的PL/SQL块。 但存储过程不同于已经普通的PL/SQL程序&#xff0c;我们通常把PL/SQL程序称为无名块&#xff0c;而存储过程是以命名的方式存储于数据库中的。 因此&#xff0c;我们可以这样理解&#xff0c;为PLSQL程…...

做网站还是做app好/营销推广投放平台

4.2.2.5.3. range限制条件的优化(in与>,<在index命中上的区别等) 在SQL中经常会出现多个range(范围)限制条件。这里指的范围限制条件包括>,<,between等。这些范围限制条件会对相应的索引使用造成影响。正常情况下&#xff0c;即使将这些范围条件调到where子句中的最…...

设置网络的网站/口碑营销经典案例

题库来源&#xff1a;安全生产模拟考试一点通公众号小程序 安全生产模拟考试一点通&#xff1a;A特种设备相关管理&#xff08;电梯&#xff09;免费试题根据新A特种设备相关管理&#xff08;电梯&#xff09;考试大纲要求&#xff0c;安全生产模拟考试一点通将A特种设备相关管…...