当前位置: 首页 > news >正文

机器学习 | 回归算法原理——多项式回归

Hi,大家好,我是半亩花海。接着上次的最速下降法(梯度下降法)继续更新《白话机器学习的数学》这本书的学习笔记,在此分享多项式回归这一回归算法原理。本章的回归算法原理基于《基于广告费预测点击量》项目,欢迎大家交流学习!

目录

一、多项式回归概述

二、案例分析

1. 设置问题

2. 定义模型

3. 多项式回归


一、多项式回归概述

多项式回归是一种基于多项式函数的回归分析方法,用于拟合数据中的非线性关系。与简单的线性回归不同,多项式回归通过引入多项式项来建模数据的非线性特征,从而提高了模型的灵活性和适用性。


二、案例分析

1. 设置问题

还记得前两节我们定义的用于预测的一次函数吗?

f_\theta(x)=\theta_0+\theta_1 x

因为是一次函数,所以它的图像是直线。

不过,对于一开始我在图中添加的数据点来说,直线一定是最好的拟合方式吗?曲线拟合的效果会更好吗?

2. 定义模型

通过清晰直观地观察下图,并经过探索我们会发现,其实曲线相对来说会比直线拟合得更好

如此看来,曲线似乎看起来更拟合数据。在此,我们可以把 f_\theta(x) 定义为二次函数,便能用它来表示这条曲线,如下所示:

f_\theta(x)=\theta_0+\theta_1 x+\theta_2 x^2

再或者,用更大次数的表达式也可以。这样就能表示更复杂的曲线了,如下所示:

f_\theta(x)=\theta_0+\theta_1 x+\theta_2 x^2+\theta_3 x^3+\cdots+\theta_n x^n

在找出最合适的表达式之前,需要不断地去尝试。当然这里有个误区,并不是说函数次数越大,拟合得就越好,难免也会出现过拟合的问题(在深度学习中会接触到)。

3. 多项式回归

回到我们定义的二次函数中,我们增加了 \theta _2 这个参数,接下来得需要推导出 \theta _2 更新表达式,和上一节《机器学习 | 回归算法原理——最速下降法(梯度下降法)-CSDN博客》里面的原理一样,用目标函数对 \theta _2 进行偏微分便就能求出来。

u=E(\theta)v=f_\theta(x),再将 u\theta _2 偏微分,求出更新表达式。 uv 微分即 \frac{\partial u}{\partial v} 的部分应该和前一节里的求法是一样的,如下式。

\begin{aligned} \frac{\partial u}{\partial v} & =\frac{\partial}{\partial v}\left(\frac{1}{2} \sum_{i=1}^n\left(y^{(i)}-v\right)^2\right) \\ & =\frac{1}{2} \sum_{i=1}^n\left(\frac{\partial}{\partial v}\left(y^{(i)}-v\right)^2\right) \\ & =\frac{1}{2} \sum_{i=1}^n\left(\frac{\partial}{\partial v}\left(y^{(i)^2}-2 y^{(i)} v+v^2\right)\right) \\ & =\frac{1}{2} \sum_{i=1}^n\left(-2 y^{(i)}+2 v\right) \\ & =\sum_{i=1}^n\left(v-y^{(i)}\right) \end{aligned}

所以我们只要求 v 对 \theta _2 的微分即可,如下式。

\begin{aligned} \frac{\partial v}{\partial \theta_2} & =\frac{\partial}{\partial \theta_2}\left(\theta_0+\theta_1 x+\theta_2 x^2\right) \\ & =x^2 \end{aligned}

得出最终的参数更新表达式如下所示:

\begin{aligned} & \theta_0:=\theta_0-\eta \sum_{i=1}^n\left(f_\theta\left(x^{(i)}\right)-y^{(i)}\right) \\ & \theta_1:=\theta_1-\eta \sum_{i=1}^n\left(f_\theta\left(x^{(i)}\right)-y^{(i)}\right) x^{(i)} \\ & \theta_2:=\theta_2-\eta \sum_{i=1}^n\left(f_\theta\left(x^{(i)}\right)-y^{(i)}\right) x^{(i)^2} \end{aligned}

那么即使增加参数,比如有 \theta _3\theta _4 等,我们依然可以用同样的的方法求出它们的更新表达式。像这样增加函数中多项式的次数,然后再使用函数的分析方法(偏微分)被称为多项式回归

相关文章:

机器学习 | 回归算法原理——多项式回归

Hi,大家好,我是半亩花海。接着上次的最速下降法(梯度下降法)继续更新《白话机器学习的数学》这本书的学习笔记,在此分享多项式回归这一回归算法原理。本章的回归算法原理基于《基于广告费预测点击量》项目,…...

力扣224【基本计算器】

给你一个字符串表达式 s &#xff0c;请你实现一个基本计算器来计算并返回它的值。 注意:不允许使用任何将字符串作为数学表达式计算的内置函数&#xff0c;比如 eval() 。 1 < s.length < 3 * 105 s 由数字、‘’、‘-’、‘(’、‘)’、和 ’ ’ 组成 s 表示一个有效的…...

【Linux】HTTP 协议

目录 1. URL2. HTTP 协议2.1. HTTP 请求2.2. HTTP 响应 1. URL URL 表示着是统一资源定位符(Uniform Resource Locator), 就是 web 地址&#xff0c;俗称“网址”; 每个有效的 URL 可以通过互联网访问唯一的资源, 是互联网上标准资源的地址; URL 的主要由四个部分组成: sche…...

@Builder注释导致@RequestBody的前端json反序列化失败,HTTP400

项目里发生了一个bug&#xff0c;就是前端请求一个接口时候&#xff0c;报了HTTP 400 Bad Request 通常来说这个问题是前后端的参数没对齐&#xff0c;比如前端传了个String&#xff0c;但后端对应的是Integer。 所以我就排查了半天&#xff0c;结果没发现啥错误&#xff0c;…...

网络学习|如何理解服务的端口号

文章目录 1. 端口号的定义2. 端口号的分类3. 端口号的用途4. 注意事项5. 示例图解 后端面试中可能遇到的端口相关问题及答案1. 什么是端口号&#xff1f;为什么需要端口号&#xff1f;2. 知名端口&#xff08;Well-Known Ports&#xff09;有哪些&#xff0c;举例说明&#xff…...

《0基础》学习Python——第十八讲__爬虫/<1>

一、什么是爬虫 爬虫是一种网络数据抓取的技术。通过编写程序&#xff08;通常使用Python&#xff09;&#xff0c;爬虫可以自动化地访问网页&#xff0c;解析网页内容并提取出所需的数据。爬虫可以用于各种用途&#xff0c;如搜索引擎的索引&#xff0c;数据分析和挖掘&#x…...

NFTScan 浏览器现已支持 .mint 域名搜索功能!

近日&#xff0c;NFT 数据基础设施 NFTScan 浏览器现已支持用户输入 .mint 域名进行 Mint Blockchain 网络钱包地址的搜索查询&#xff0c; NFTScan 用户能够轻松地使用域名追踪 NFT 交易&#xff0c;为 NFT 钱包地址相关的搜索查询功能增加透明度和便利性。 NFTScan explorer…...

Git基本原理讲解、常见命令、Git版本回退、Git抛弃本地分支拉取仓库最新分支

借此机会写篇博客汇总一下自己去公司实习之后遇到的一些常见关于Git的操作。 Git基本认识 Git把数据看作是对小型文件系统的一组快照&#xff0c;每次提交更新&#xff0c;或在Git中保存项目状态时&#xff0c;Git主要对当时的全部文件制作一个快照并保存这个快照的索引。同时…...

前端网页打开PC端本地的应用程序实现方案

最近开发有一个需求&#xff0c;网页端有个入口需要跳转三维大屏&#xff0c;而这个大屏是一个exe应用程序。产品需要点击这个入口&#xff0c;并打开这个应用程序。这个就类似于百度网盘网页跳转到PC端应用程序中。 这里我们采用添加自定义协议的方式打开该应用程序。一开始可…...

遇到not allow unquoted fieldName怎么办

前言 Exception in thread "main" com.alibaba.fastjson2.JSONException: not allow unquoted fieldName, offset 2, character , line 1, column 3, fastjson-version 2.0.25 { "data":null, "code":200, "msg":"成功"…...

IDEA安装并使用通义灵码

IDEA安装并使用通义灵码 通义灵码介绍安装通义灵码 通义灵码介绍 在数字革命的前沿&#xff0c;阿里云技术团队匠心独运&#xff0c;倾力打造“通义灵码”——一个融合尖端科技的智能编码助手&#xff0c;旨在革新软件工程的未来。 实时代码扩展 通义灵码具备深度理解代码脉络的…...

<数据集>AffectNet表情识别数据集<目标检测>

数据集格式&#xff1a;VOCYOLO格式 图片数量&#xff1a;29752张 标注数量(xml文件个数)&#xff1a;29752 标注数量(txt文件个数)&#xff1a;29752 标注类别数&#xff1a;7 标注类别名称&#xff1a;[anger,contempt,disgust,fear,happy,neutral,sad,surprise] 序号类…...

ThinkPHP对接易联云打印

引入composer包 composer require yly-openapi/yly-openapi-sdk <?phpnamespace app\common\library;use app\admin\model\yp\Order; use App\Api\PrintService; use App\Config\YlyConfig; use App\Oauth\YlyOauthClient; use think\Cache; use think\Config;class Yly {…...

JavaScript轮播图

HTML部分 <div class"box" onmouseover"over()" onmouseout"noover()"><img src"./img/zuo.png" alt"" class"left_arrow" onclick"left_last()"><img src"./img/yy.png" al…...

修复SteamUI.dll加载失败的指南,快速修复failed to load steamui.dll

在使用Steam平台进行游戏下载、安装和运行时&#xff0c;可能会遇到一些系统错误&#xff0c;比如“failed to load steamui.dll”。这个错误通常意味着Steam的用户界面库文件steamui.dll出现了问题。本文将详细介绍steamui.dll文件的相关信息以及如何修复这一问题。 一.什么是…...

PCL Local Surface Patches 关键点提取

目录 一、算法原理1、算法原理2、 参考文献二、代码实现三、结果展示本文由CSDN点云侠原创,原文链接。如果你不是在点云侠的博客中看到该文章,那么此处便是不要脸的爬虫与GPT。 一、算法原理 1、算法原理 主曲率是某一点局部形状的体现,Local Surface Patches 关键点检测法…...

Vue与ASP.NET Core Web Api设置localhost与本地ip地址皆可访问

Vue的设置 我们创建并启动一个Vue项目&#xff0c;如下所示&#xff1a; 打开cmd&#xff0c;输入ipconfig查询本地ip地址&#xff1a; 想通过本地ip地址访问&#xff0c;把localhost改成本地ip地址&#xff0c;发现打不开&#xff1a; 这是因为Vue项目默认只有localhost&…...

Android 线程池的面试题 线程线程池面试题

1.为什么要用线程池 降低资源消耗&#xff1a;通过复用线程&#xff0c;降低创建和销毁线程的损耗。 提高响应速度&#xff1a;任务不需要等待线程创建就能立即执行。 提高线程的可管理性&#xff1a;使用线程池可以进行统一的分配、调优和监控。 2. 线程池执行流程&#xff08…...

Flink时间和窗口

目录 时间语义 水位线&#xff08;Watermarks&#xff09; 并行流中的水位线 窗口 滚动窗口—Tumbling Windows 滑动窗口—Sliding Windows 会话窗口—Session Windows 全局窗口—Global Windows 例子 时间语义 如图所示&#xff0c;由事件生成器&#xff08;Event Pr…...

LLaMA模型量化方法优化:提高性能与减小模型大小

LLaMA模型量化方法优化:提高性能与减小模型大小 LLaMA模型量化方法优化:提高性能与减小模型大小引言新增量化方法性能评估7B模型13B模型 结果分析结论 LLaMA模型量化方法优化:提高性能与减小模型大小 引言 在大型语言模型(LLM)的应用中,模型大小和推理速度一直是关键的挑战。…...

智慧医疗能源事业线深度画像分析(上)

引言 医疗行业作为现代社会的关键基础设施,其能源消耗与环境影响正日益受到关注。随着全球"双碳"目标的推进和可持续发展理念的深入,智慧医疗能源事业线应运而生,致力于通过创新技术与管理方案,重构医疗领域的能源使用模式。这一事业线融合了能源管理、可持续发…...

反向工程与模型迁移:打造未来商品详情API的可持续创新体系

在电商行业蓬勃发展的当下&#xff0c;商品详情API作为连接电商平台与开发者、商家及用户的关键纽带&#xff0c;其重要性日益凸显。传统商品详情API主要聚焦于商品基本信息&#xff08;如名称、价格、库存等&#xff09;的获取与展示&#xff0c;已难以满足市场对个性化、智能…...

【Java学习笔记】Arrays类

Arrays 类 1. 导入包&#xff1a;import java.util.Arrays 2. 常用方法一览表 方法描述Arrays.toString()返回数组的字符串形式Arrays.sort()排序&#xff08;自然排序和定制排序&#xff09;Arrays.binarySearch()通过二分搜索法进行查找&#xff08;前提&#xff1a;数组是…...

Nuxt.js 中的路由配置详解

Nuxt.js 通过其内置的路由系统简化了应用的路由配置&#xff0c;使得开发者可以轻松地管理页面导航和 URL 结构。路由配置主要涉及页面组件的组织、动态路由的设置以及路由元信息的配置。 自动路由生成 Nuxt.js 会根据 pages 目录下的文件结构自动生成路由配置。每个文件都会对…...

【配置 YOLOX 用于按目录分类的图片数据集】

现在的图标点选越来越多&#xff0c;如何一步解决&#xff0c;采用 YOLOX 目标检测模式则可以轻松解决 要在 YOLOX 中使用按目录分类的图片数据集&#xff08;每个目录代表一个类别&#xff0c;目录下是该类别的所有图片&#xff09;&#xff0c;你需要进行以下配置步骤&#x…...

让AI看见世界:MCP协议与服务器的工作原理

让AI看见世界&#xff1a;MCP协议与服务器的工作原理 MCP&#xff08;Model Context Protocol&#xff09;是一种创新的通信协议&#xff0c;旨在让大型语言模型能够安全、高效地与外部资源进行交互。在AI技术快速发展的今天&#xff0c;MCP正成为连接AI与现实世界的重要桥梁。…...

使用Matplotlib创建炫酷的3D散点图:数据可视化的新维度

文章目录 基础实现代码代码解析进阶技巧1. 自定义点的大小和颜色2. 添加图例和样式美化3. 真实数据应用示例实用技巧与注意事项完整示例(带样式)应用场景在数据科学和可视化领域,三维图形能为我们提供更丰富的数据洞察。本文将手把手教你如何使用Python的Matplotlib库创建引…...

QT3D学习笔记——圆台、圆锥

类名作用Qt3DWindow3D渲染窗口容器QEntity场景中的实体&#xff08;对象或容器&#xff09;QCamera控制观察视角QPointLight点光源QConeMesh圆锥几何网格QTransform控制实体的位置/旋转/缩放QPhongMaterialPhong光照材质&#xff08;定义颜色、反光等&#xff09;QFirstPersonC…...

push [特殊字符] present

push &#x1f19a; present 前言present和dismiss特点代码演示 push和pop特点代码演示 前言 在 iOS 开发中&#xff0c;push 和 present 是两种不同的视图控制器切换方式&#xff0c;它们有着显著的区别。 present和dismiss 特点 在当前控制器上方新建视图层级需要手动调用…...

PostgreSQL——环境搭建

一、Linux # 安装 PostgreSQL 15 仓库 sudo dnf install -y https://download.postgresql.org/pub/repos/yum/reporpms/EL-$(rpm -E %{rhel})-x86_64/pgdg-redhat-repo-latest.noarch.rpm# 安装之前先确认是否已经存在PostgreSQL rpm -qa | grep postgres# 如果存在&#xff0…...