Pytorch基础:Tensor的squeeze和unsqueeze方法
相关阅读
Pytorch基础
https://blog.csdn.net/weixin_45791458/category_12457644.html?spm=1001.2014.3001.5482
在Pytorch中,squeeze和unsqueeze是Tensor的一个重要方法,同时它们也是torch模块中的一个函数,它们的语法如下所示。
Tensor.squeeze(dim=None) → Tensor
torch.squeeze(input, dim=None) → Tensorinput (Tensor) – the input tensor.
dim (int or tuple of ints, optional) – if given, the input will be squeezed only in the specified dimensions.Tensor.unsqueeze(dim) → Tensor
torch.unsqueeze(input, dim) → Tensorinput (Tensor) – the input tensor.
dim (int) – the index at which to insert the singleton dimension
一、squeeze
squeeze函数(或方法)返回一个新的张量,该张量移除了原张量中大小为1的维度,例如:输入张量的形状是(A×1×B×C×1×D),使用了squeeze函数(或方法)后,输出张量的形状是(A×B×C×D)。请注意:输出张量将与输入张量共享底层存储,因此改变一个张量的内容将改变另一个张量的内容。默认情况下,squeeze将移除所有尺寸为1的维度,如果传递了dim参数,则会将dim中的维度展开。dim的范围可以是[-input.dim()-1, input.dim()],其中负数索引表示从后往前数的位置,例如-1代表最后一个维度。
可以看下面的例子以更好的理解:
import torch# 创建一个形状为 (2, 1, 2, 1, 2) 的张量
x = torch.zeros(2, 1, 2, 1, 2)
print(x, x.size(), id(x))# 移除所有大小为1的维度
a = torch.squeeze(x) # 等价于 a = x.squeeze()
print(a, a.size(), id(a))# 尝试移除第0维度(由于第0维度大小不为1,因此不改变形状)
b = torch.squeeze(x, 0) # 等价于 b = x.squeeze(0)
print(b, b.size(), id(b))# 移除第1维度(第1维度大小为1)
c = torch.squeeze(x, 1) # 等价于 c = x.squeeze(1)
print(c, c.size(), id(c))# 移除第1、第2和第3维度(第1和第3维度大小为1,第2维度不变)
d = torch.squeeze(x, (1, 2, 3)) # 等价于 d = x.squeeze((1, 2, 3))
print(d, d.size(), id(d))# 验证所有张量共享底层存储空间
print(x.storage().data_ptr() == a.storage().data_ptr() == b.storage().data_ptr() == c.storage().data_ptr() == d.storage().data_ptr()) # 共享底层存储空间输出:
tensor([[[[[0., 0.]],[[0., 0.]]]],[[[[0., 0.]],[[0., 0.]]]]]) torch.Size([2, 1, 2, 1, 2]) 1899057117680tensor([[[0., 0.],[0., 0.]],[[0., 0.],[0., 0.]]]) torch.Size([2, 2, 2]) 1899057158240tensor([[[[[0., 0.]],[[0., 0.]]]],[[[[0., 0.]],[[0., 0.]]]]]) torch.Size([2, 1, 2, 1, 2]) 1899737467296tensor([[[[0., 0.]],[[0., 0.]]],[[[0., 0.]],[[0., 0.]]]]) torch.Size([2, 2, 1, 2]) 1899737467376tensor([[[0., 0.],[0., 0.]],[[0., 0.],[0., 0.]]]) torch.Size([2, 2, 2]) 1899737467216
True
二、 unsqueeze
unsqueeze函数(或方法)函数返回一个新的张量,该张量在指定维度(dim)插入一个大小为1的维度。使用unsqueeze函数(或方法)后,输入张量的形状会相应增加一个维度。例如,输入张量的形状是(A×B×C),在第1维度使用unsqueeze后,输出张量的形状将变为(A×1×B×C)。请注意,输出张量将与输入张量共享底层存储,因此改变一个张量的内容将改变另一个张量的内容。dim的范围可以是[-input.dim(), input.dim()-1],其中负数索引表示从后往前数的位置,例如-1代表最后一个维度。
可以看下面的例子以更好的理解:
import torch# 创建一个形状为 (2, 2, 2) 的张量
x = torch.zeros(2, 2, 2)
print(x, x.size(), id(x))# 在第0维度插入单维度
a = torch.unsqueeze(x, 0) # 等价于 a = x.unsqueeze(0)
print(a, a.size(), id(a))# 在第1维度插入单维度
b = torch.unsqueeze(x, 1) # 等价于 b = x.unsqueeze(1)
print(b, b.size(), id(b))# 在第2维度插入单维度
c = torch.unsqueeze(x, 2) # 等价于 c = x.unsqueeze(2)
print(c, c.size(), id(c))# 在第3维度插入单维度
d = torch.unsqueeze(x, 3) # 等价于 d = x.unsqueeze(3)
print(d, d.size(), id(d))# 验证所有张量共享底层存储空间
print(x.storage().data_ptr() == a.storage().data_ptr() == b.storage().data_ptr() == c.storage().data_ptr() == d.storage().data_ptr()) # 共享底层存储空间输出:
tensor([[[0., 0.],[0., 0.]],[[0., 0.],[0., 0.]]]) torch.Size([2, 2, 2]) 1509028592032tensor([[[[0., 0.],[0., 0.]],[[0., 0.],[0., 0.]]]]) torch.Size([1, 2, 2, 2]) 1509028632592tensor([[[[0., 0.],[0., 0.]]],[[[0., 0.],[0., 0.]]]]) torch.Size([2, 1, 2, 2]) 1507561225888tensor([[[[0., 0.]],[[0., 0.]]],[[[0., 0.]],[[0., 0.]]]]) torch.Size([2, 2, 1, 2]) 1507561391824tensor([[[[0.],[0.]],[[0.],[0.]]],[[[0.],[0.]],[[0.],[0.]]]]) torch.Size([2, 2, 2, 1]) 1507561391904
True相关文章:
Pytorch基础:Tensor的squeeze和unsqueeze方法
相关阅读 Pytorch基础https://blog.csdn.net/weixin_45791458/category_12457644.html?spm1001.2014.3001.5482 在Pytorch中,squeeze和unsqueeze是Tensor的一个重要方法,同时它们也是torch模块中的一个函数,它们的语法如下所示。 Tensor.…...
PHP压缩打包,下载目录或者文件,解压zip文件
函数 /*** 压缩整个文件夹为zip文件* 本地需要绝对路径,服务器需要相对路径*/function makeZipFile($zip_path , $folder_path ) {$rootPath realpath($folder_path);$zip new ZipArchive(); // $zip->open($zip_path, ZipArchive::CREATE | ZipArchi…...
后端面试题日常练-day08 【Java基础】
题目 希望这些选择题能够帮助您进行后端面试的准备,答案在文末 Java中的静态变量和实例变量有何区别? a) 静态变量属于类,实例变量属于对象 b) 静态变量只能在静态方法中访问,实例变量只能在实例方法中访问 c) 静态变量在类加载时…...
Linux:core文件无法生成排查步骤
1、进程的RLIMIT_CORE或RLIMIT_SIZE被设置为0。使用getrlimit和ulimit检查修改。 使用ulimit -a 命令检查是否开启core文件生成限制 如果发现-c后面的结果是0,就临时添加环境变量ulimit -c unlimited,之后在启动程序观察是否有core生成,如果…...
大模型学习资源
上一篇扯了一堆废话,关于大模型,提供一下建议 说实话,大模型更新太快,以我30岁的高龄实在不适合再去研究技术。偶然发现,国内的大模型厂家在做推广的培训。比如上海人工智能实验室,阿里,百度。…...
约定(模拟赛2 T3)
题目描述 小A在你的帮助下成功打开了山洞中的机关,虽然他并没有找到五维空间,但他在山洞中发现了无尽的宝藏,这个消息很快就传了出去。人们为了争夺洞中的宝藏相互陷害,甚至引发了战争,世界都快要毁灭了。小A非常地难…...
Java推送xml数据进行http请求
将json转成xml数据进行推送,打印出最终推送xml的数据格式,再调整代码 直接上代码,详情请看代码注释 public void pushReceipt(JSONObject jsonObj) {try {// 创建 XML 文档Document doc createXmlDocument();// 构建 XML 结构Element rootE…...
Docker安装 OpenResty详细教程
OpenResty 是一个基于 Nginx 的高性能 Web 平台,它集成了 Lua 脚本语言,使得开发者可以在 Nginx 服务器上轻松地进行动态 Web 应用开发。OpenResty 的核心目标是通过将 Nginx 的高性能与 Lua 的灵活性结合起来,提供一个强大且高效的 Web 开发…...
前端位运算运用场景小知识(权限相关)
前提:此篇结合AI、公司实际业务产出,背景是公司有个业务涉及权限,用位运算来控制的,比较新奇,所以记录一下(可能自己比较low) 前端js位运算一般实际的应用场景在哪 ai回答: 整数运算与性能优化ÿ…...
【云原生】Kubernetes中的DaemonSet介绍、原理、用法及实战应用案例分析
✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,…...
使用框架构建React Native应用程序的最佳实践
在React Conf上,我们更新了关于开始构建React Native应用程序的最佳工具的指导:一个React Native框架——一个包含所有必要API的工具箱,让您能够构建生产就绪的应用程序。 现在推荐使用React Native框架(如Expo)来创建…...
Godot入门 02玩家1.0版
添加Node2D节点,重命名Game 创建玩家场景,添加CharacterBody2D节点 添加AnimatedSprite2D节点 从精灵表中添加帧 选择文件 设置成8*8 图片边缘模糊改为清晰 设置加载后自动播放,动画循环 。动画速度10FPS,修改动画名称idle。 拖动…...
Docker-Compose配置zookeeper+KaFka+CMAK简单集群
1. 本地DNS解析管理 # 编辑hosts文件 sudo nano /etc/hosts # 添加以下三个主机IP 192.168.186.77 zoo1 k1 192.168.186.18 zoo2 k2 192.168.186.216 zoo3 k3注:zoo1是192.168.186.77的别名,zoo2是192.168.186.18的别名,zoo3是192.168.186.1…...
Python中,集合几种基本运算
在Python中,集合具有几种基本的集合运算,这些运算可以用于处理集合中的数据。以下是Python集合的常见运算,包括并集、交集、差集和对称差集等,并提供代码示例来显示其用法。 并集 (Union) 并集是两个集合中所有唯一元素的结合&a…...
netsuite查询货品库存
//单品可用数量获取var inventorySearch search.create({type: inventoryitem,filters: [[internalid, is, lineItem2.nsSkuId] // 根据 SKU ID 进行筛选],columns: [search.createColumn({name: locationquantityavailable,summary: SUM}) // 获取可用库存总和]});var result…...
Java 实现分页的几种方式详解
目录 分页概述Java实现分页的几种方式 手动分页基于JDBC的分页基于Hibernate的分页基于MyBatis的分页[基于Spring Data JPA的分页](#基于Spring Data JPA的分页)使用PageHelper插件的分页 分页中的注意事项总结 分页概述 分页是指将大量数据分成若干小块,每次只显…...
vite构建vue3项目hmr生效问题踩坑记录
vite构建vue3项目hmr生效问题踩坑记录 hmr的好处 以下是以表格形式呈现的前端开发中HMR(热模块替换)带来的好处: 好处描述提升开发效率允许开发者在不刷新整个页面的情况下实时更新修改的代码,减少等待时间保持应用状态在模块替…...
区块链赋能民生大数据
区块链技术作为一种新兴的信息技术,其在民生大数据领域的应用正逐渐展现出巨大的潜力和价值。以下是对区块链赋能民生大数据的详细阐述: 一、区块链技术概述 区块链是一种去中心化、分布式账本技术,具有数据不可篡改、可追溯、公开透明等特…...
10 Vue 特性要点
Vue2 特性要点 Vue2 源码理解 Vue 双向数据绑定 先从单向绑定切入单向绑定非常简单,就是把Mode1绑定到view,当我们用Javascript代码更新Model时, view就会自动更新 双向绑定就很容易联想到了,在单向绑定的基础上,用户更新了View, Mode1的数据也自动被更新了 因为 Vue 是数据双向…...
ESP32和mDNS学习
目录 mDNS的作用mDNS涉及到的标准文件组播地址IPv4 多播地址IPv6 多播地址预先定义好的组播地址 mDNS调试工具例程mDNS如何开发和使用注册服务查询服务 mDNS的作用 mDNS 是一种组播 UDP 服务,用来提供本地网络服务和主机发现。 你要和设备通信,需要记住…...
超短脉冲激光自聚焦效应
前言与目录 强激光引起自聚焦效应机理 超短脉冲激光在脆性材料内部加工时引起的自聚焦效应,这是一种非线性光学现象,主要涉及光学克尔效应和材料的非线性光学特性。 自聚焦效应可以产生局部的强光场,对材料产生非线性响应,可能…...
【网络安全产品大调研系列】2. 体验漏洞扫描
前言 2023 年漏洞扫描服务市场规模预计为 3.06(十亿美元)。漏洞扫描服务市场行业预计将从 2024 年的 3.48(十亿美元)增长到 2032 年的 9.54(十亿美元)。预测期内漏洞扫描服务市场 CAGR(增长率&…...
Go 语言接口详解
Go 语言接口详解 核心概念 接口定义 在 Go 语言中,接口是一种抽象类型,它定义了一组方法的集合: // 定义接口 type Shape interface {Area() float64Perimeter() float64 } 接口实现 Go 接口的实现是隐式的: // 矩形结构体…...
C# 类和继承(抽象类)
抽象类 抽象类是指设计为被继承的类。抽象类只能被用作其他类的基类。 不能创建抽象类的实例。抽象类使用abstract修饰符声明。 抽象类可以包含抽象成员或普通的非抽象成员。抽象类的成员可以是抽象成员和普通带 实现的成员的任意组合。抽象类自己可以派生自另一个抽象类。例…...
土地利用/土地覆盖遥感解译与基于CLUE模型未来变化情景预测;从基础到高级,涵盖ArcGIS数据处理、ENVI遥感解译与CLUE模型情景模拟等
🔍 土地利用/土地覆盖数据是生态、环境和气象等诸多领域模型的关键输入参数。通过遥感影像解译技术,可以精准获取历史或当前任何一个区域的土地利用/土地覆盖情况。这些数据不仅能够用于评估区域生态环境的变化趋势,还能有效评价重大生态工程…...
GitHub 趋势日报 (2025年06月08日)
📊 由 TrendForge 系统生成 | 🌐 https://trendforge.devlive.org/ 🌐 本日报中的项目描述已自动翻译为中文 📈 今日获星趋势图 今日获星趋势图 884 cognee 566 dify 414 HumanSystemOptimization 414 omni-tools 321 note-gen …...
使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台
🎯 使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台 📌 项目背景 随着大语言模型(LLM)的广泛应用,开发者常面临多个挑战: 各大模型(OpenAI、Claude、Gemini、Ollama)接口风格不统一;缺乏一个统一平台进行模型调用与测试;本地模型 Ollama 的集成与前…...
【电力电子】基于STM32F103C8T6单片机双极性SPWM逆变(硬件篇)
本项目是基于 STM32F103C8T6 微控制器的 SPWM(正弦脉宽调制)电源模块,能够生成可调频率和幅值的正弦波交流电源输出。该项目适用于逆变器、UPS电源、变频器等应用场景。 供电电源 输入电压采集 上图为本设计的电源电路,图中 D1 为二极管, 其目的是防止正负极电源反接, …...
Java求职者面试指南:计算机基础与源码原理深度解析
Java求职者面试指南:计算机基础与源码原理深度解析 第一轮提问:基础概念问题 1. 请解释什么是进程和线程的区别? 面试官:进程是程序的一次执行过程,是系统进行资源分配和调度的基本单位;而线程是进程中的…...
LLMs 系列实操科普(1)
写在前面: 本期内容我们继续 Andrej Karpathy 的《How I use LLMs》讲座内容,原视频时长 ~130 分钟,以实操演示主流的一些 LLMs 的使用,由于涉及到实操,实际上并不适合以文字整理,但还是决定尽量整理一份笔…...
