MongoDB教程(十八):MongoDB MapReduce
💝💝💝首先,欢迎各位来到我的博客,很高兴能够在这里和您见面!希望您在这里不仅可以有所收获,同时也能感受到一份轻松欢乐的氛围,祝你生活愉快!
文章目录
- 引言
- 一、MapReduce 概述
- 二、MapReduce 实现
- Map 函数
- Reduce 函数
- 完整的 MapReduce 调用
- 三、MapReduce 详解
- 数据准备
- 执行 MapReduce
- 四、MapReduce 的高级选项
- 五、总结
引言
MongoDB 的 MapReduce 是一种强大的工具,用于处理大规模数据集并从中提取有价值的信息。MapReduce 的概念源自 Google 的论文,后来被 Hadoop 和其他大数据处理框架所采纳。在 MongoDB 中,MapReduce 提供了一种灵活的方式对集合中的数据进行聚合和分析。本文将深入探讨 MapReduce 的工作原理,并通过具体的案例代码来演示其使用方法。
一、MapReduce 概述
MapReduce 分为两个主要阶段:Map 阶段和 Reduce 阶段。
-
Map 阶段:在这一阶段,用户定义的 map 函数被应用于集合中的每一项文档,产生一系列的键值对。这些键值对随后会被分组,具有相同键的所有值会被发送到 Reduce 阶段。
-
Reduce 阶段:在这一阶段,用户定义的 reduce 函数接收一组键相同的值,并将它们聚合成更少的输出值。最终的输出是一个键值对的列表。
二、MapReduce 实现
Map 函数
function map() {emit(this.category, this.price);
}
这个 map 函数会遍历集合中的每一条文档,然后发出一对键值对,其中键是文档中的 category 字段,值是 price 字段。
Reduce 函数
function reduce(key, values) {var total = 0;for (var i = 0; i < values.length; i++) {total += values[i];}return total;
}
reduce 函数接收一个键和该键对应的值数组。在这个例子中,它计算了所有属于同一类别的商品价格总和。
完整的 MapReduce 调用
db.products.mapReduce(function() { emit(this.category, this.price); },function(key, values) { var total = 0;for (var i = 0; i < values.length; i++) {total += values[i];}return total;},{out: "outputCollection"}
);
这段代码会在 products 集合上执行 MapReduce,并将结果存储在一个名为 outputCollection 的新集合中。
三、MapReduce 详解
数据准备
假设我们有一个 products 集合,其中包含以下文档:
{"_id": ObjectId("5f9c9a8d2b2acd3a4f6c79b7"),"name": "Laptop","category": "Electronics","price": 1200
},
{"_id": ObjectId("5f9c9a8d2b2acd3a4f6c79b8"),"name": "Monitor","category": "Electronics","price": 200
},
{"_id": ObjectId("5f9c9a8d2b2acd3a4f6c79b9"),"name": "T-shirt","category": "Clothing","price": 20
}
执行 MapReduce
在执行上述 MapReduce 代码后,outputCollection 将会包含以下文档:
{"_id": "Electronics","value": 1400
},
{"_id": "Clothing","value": 20
}
这里 _id 字段对应于原始 map 函数中的 key,而 value 字段则是 reduce 函数的输出。
四、MapReduce 的高级选项
MongoDB 的 MapReduce 支持许多高级选项,例如:
- out 参数:指定输出结果的存储位置,可以是一个新集合或者覆盖现有集合。
- query 参数:限制 MapReduce 在特定子集的文档上运行。
- sort 参数:在 MapReduce 之前对文档进行排序。
- finalize 参数:在 Reduce 函数之后运行,用于对输出进行最后的修改。
五、总结
MongoDB 的 MapReduce 是一个功能强大的工具,用于处理大规模数据集。通过本文的介绍,你应该能够理解 MapReduce 的基本原理,并能够编写自己的 MapReduce 函数来解决复杂的数据分析问题。然而,在性能敏感的应用场景中,考虑使用 MongoDB 的聚合框架(Aggregation Framework),因为它提供了更优化的性能和更丰富的功能集。
喜欢博主的同学,请给博主一丢丢打赏吧↓↓↓您的支持是我不断创作的最大动力哟!感谢您的支持哦😘😘😘

💝💝💝如有需要请大家订阅我的专栏【MongoDB系列】哟!我会定期更新相关系列的文章
💝💝💝关注!关注!!请关注!!!请大家关注下博主,您的支持是我不断创作的最大动力!!!
| MongoDB相关文章索引 | 文章链接 |
|---|---|
| MongoDB教程(一):Linux系统安装mongoDB详细教程 | MongoDB教程(一):Linux系统安装mongoDB详细教程 |
| MongoDB教程(二):mongoDB引用shell | MongoDB教程(二):mongoDB引用shell |
| MongoDB教程(三):mongoDB用户管理 | MongoDB教程(三):mongoDB用户管理 |
| MongoDB教程(四):mongoDB索引 | MongoDB教程(四):mongoDB索引 |
| MongoDB教程(五):mongoDB聚合框架 | MongoDB教程(五):mongoDB聚合框架 |
| MongoDB教程(六):mongoDB复制副本集 | MongoDB教程(六):mongoDB复制副本集 |
| MongoDB教程(七):mongoDB分片 | MongoDB教程(七):mongoDB分片 |
| MongoDB教程(八):mongoDB数据备份与恢复 | MongoDB教程(八):mongoDB数据备份与恢复 |
| MongoDB教程(九):java集成mongoDB | MongoDB教程(九):java集成mongoDB |
| MongoDB教程(十):Python集成mongoDB | MongoDB教程(十):Python集成mongoDB |
| MongoDB教程(十一):MongoDB关系管理与文档关联 | MongoDB教程(十一):MongoDB关系管理与文档关联 |
| MongoDB教程(十二):MongoDB数据库索引 | MongoDB教程(十二):MongoDB数据库索引 |
| MongoDB教程(十四):MongoDB查询分析 | MongoDB教程(十四):MongoDB查询分析 |
| MongoDB教程(十五):MongoDB原子操作 | MongoDB教程(十五):MongoDB原子操作 |
| MongoDB教程(十六):MongoDB高级索引 | MongoDB教程(十六):MongoDB高级索引 |
| MongoDB教程(十七):MongoDB主键类型ObjectId | MongoDB教程(十七):MongoDB主键类型ObjectId |
❤️❤️❤️觉得有用的话点个赞 👍🏻 呗。
❤️❤️❤️本人水平有限,如有纰漏,欢迎各位大佬评论批评指正!😄😄😄
💘💘💘如果觉得这篇文对你有帮助的话,也请给个点赞、收藏下吧,非常感谢!👍 👍 👍
🔥🔥🔥Stay Hungry Stay Foolish 道阻且长,行则将至,让我们一起加油吧!🌙🌙🌙
相关文章:
MongoDB教程(十八):MongoDB MapReduce
💝💝💝首先,欢迎各位来到我的博客,很高兴能够在这里和您见面!希望您在这里不仅可以有所收获,同时也能感受到一份轻松欢乐的氛围,祝你生活愉快! 文章目录 引言一、MapRed…...
HTML前端面试题之<iframe>标签
面试题:iframe 标签的作用是什么?有哪些优缺点 ? 讲真,刷这道面试题之前我根本没有接触过iframe,网课没讲过,项目实战没用过,但却在面试题里出现了!好吧,我只能说:前端路漫漫&…...
Docker-Compose实现MySQL之主从复制
1. 主服务器(IP:192.168.186.77) 1.1 docker-compose.yml services:mysql-master:image: mysql:latest # 使用最新版本的 MySQL 镜像container_name: mysql-master # 容器的名称environment:MYSQL_ROOT_PASSWORD: 123456 # MySQL root 用户的密码MYSQL_DATABASE: masterd…...
jetson显卡没有加速,而是在用cpu推理?
jetson的库,特别是使用显卡的库,大多需要单独安装 大概率是重装了pytorch,可以使用jetson官网的pytorch! 下面是官网的链接 PyTorch for Jetson - Announcements - NVIDIA Developer Forums 安装完成之后先使用命令查看是否安…...
Linux下如何安装配置Fail2ban防护工具
Fail2ban是一款在Linux服务器上用于保护系统免受恶意攻击的防护工具。它通过监视系统日志,检测到多次失败的登录尝试或其他恶意行为后,会自动将攻击源的IP地址加入防火墙的黑名单,从而阻止攻击者进一步访问服务器。本文将介绍如何在Linux系统…...
js的深浅拷贝
深浅拷贝是编程中对数据复制的两种不同方式,它们在处理对象和数组等复合数据结构时尤为重要。下面将详细解释这两种拷贝方式。 浅拷贝(Shallow Copy) 浅拷贝创建了原始对象的一个新实例,但这个新实例的属性只是原始对象属性的引…...
实验八: 彩色图像处理
目录 一、实验目的 二、实验原理 1. 常见彩色图像格式 2. 伪彩色图像 3. 彩色图像滤波 三、实验内容 四、源程序和结果 (1) 主程序(matlab (2) 函数FalseRgbTransf (3) 函数hsi2rgb (4) 函数rgb2hsi (5) 函数GrayscaleFilter (6) 函数RgbFilter 五、结果分析 1. …...
Python酷库之旅-第三方库Pandas(048)
目录 一、用法精讲 171、pandas.Series.nlargest方法 171-1、语法 171-2、参数 171-3、功能 171-4、返回值 171-5、说明 171-6、用法 171-6-1、数据准备 171-6-2、代码示例 171-6-3、结果输出 172、pandas.Series.nsmallest方法 172-1、语法 172-2、参数 172-3、…...
springboot爱宠屋宠物商店管理系统-计算机毕业设计源码52726
目录 摘要 1 绪论 1.1 选题背景与意义 1.2国内外研究现状 1.3论文结构与章节安排 2系统分析 2.1 可行性分析 2.2 系统流程分析 2.2.1系统开发流程 2.2.2 用户登录流程 2.2.3 系统操作流程 2.2.4 添加信息流程 2.2.5 修改信息流程 2.2.6 删除信息流程 2.3 系统功能…...
自训练和增量训练word2vec模型
1、自己准备训练语料文件 根据自己的业务场景准备训练数据,比如用户在商城上的同购行为序列或同浏览行为序列。 我们希望通过自己训练业务相关的语料word2vec模型来获得词嵌入、词相关性查询等。 1.1 准备语料库文件 # 示例:准备自己的一个大规模的语…...
华三路由器开启web访问
配置路由器: # 配置Web用户名为admin,认证密码为admin,服务类型为http,用户角色为network-admin。 [Sysname] local-user admin [Sysname-luser-manage-admin] service-type http [Sysname-luser-manage-admin] authorization…...
C++软件开发值得推荐的十大高效软件分析工具
目录 1、概述 2、高效软件工具介绍 2.1、窗口查看工具SPY 2.2、Dependency Walker 2.3、剪切板查看工具Clipbrd 2.4、GDI对象查看工具GDIView 2.5、Process Explorer 2.6、Prcoess Monitor 2.7、API Monitor 2.8、调试器Windbg 2.9、反汇编工具IDA 2.10、抓包工具…...
vue2老项目中node-sass更换dart-sass
更换原因:node-sass经常会出现node版本问题,就很麻烦 卸载项目中的node-sass sass-loader npm uninstall sass-loader sass 安装dart-sas sass-loader 推荐安装sass1.26.2 sass-loader7.3.1 npm install sass-loader7.3.1 sass1.26.2 从新配置vue.…...
源/目的检查开启导致虚拟IP背后的LVS无法正常访问
情况描述 近期发现48网段主机无法访问8.83这个VIP(虚拟IP),环境是 8.83 绑定了两个LVS实例,然后LVS实例转发到后端的nginx 静态资源;整个流程是,客户端发起对VIP的请求,LVS将请求转发到后端实例…...
类和对象(四)
构造函数中的初始化列表 之前在实现构造函数时,主要是在函数体内进行赋值,而构造函数还有另一种初始化方式,通过初始化列表进行初始化。 初始化列表的使⽤⽅式是以⼀个冒号开始,接着是⼀个以逗号分隔的数据成员列表,…...
<PLC><HMI><汇川>在汇川HMI画面中,如何为UI设置全局样式?
前言 汇川的HMI软件是使用了Qt来编写的,因此在汇川的HMI程序编写过程,是支持使用qt的样式来自定义部件样式的,即qss格式。 概述 汇川的软件本身提供三个系统的style样式,我们可以直接使用,但是,如果系统提供的样式不符合你的需求,那么你可以对其进行修改,或者自己新建…...
在Git项目中添加并应用“.gitignore”文件
在Git项目中添加并应用.gitignore文件 创建或修改.gitignore文件: 在项目的根目录下创建一个名为.gitignore的文件。如果已经有此文件,可以直接修改。 在文件中添加您希望Git忽略的文件和目录。例如: # 忽略所有的log文件 *.log# 忽略所有的…...
LeetCode Hot100 搜索二维矩阵
给你一个满足下述两条属性的 m x n 整数矩阵: 每行中的整数从左到右按非严格递增顺序排列。每行的第一个整数大于前一行的最后一个整数。 给你一个整数 target ,如果 target 在矩阵中,返回 true ;否则,返回 false 。…...
iOS中的KVO(Key-Value Observing)详解
iOS中的KVO(Key-Value Observing)详解 一、KVO概述 KVO(Key-Value Observing),即键值观察/监听,是苹果提供的一套事件通知机制。它允许一个对象(观察者)观察/监听另一个对象&#…...
算法 —— 暴力枚举
目录 循环枚举 P2241 统计方形(数据加强版) P2089 烤鸡 P1618 三连击(升级版) 子集枚举 P1036 [NOIP2002 普及组] 选数 P1157 组合的输出 排列枚举 P1706 全排列问题 P1088 [NOIP2004 普及组] 火星人 循环枚举 顾名思…...
synchronized 学习
学习源: https://www.bilibili.com/video/BV1aJ411V763?spm_id_from333.788.videopod.episodes&vd_source32e1c41a9370911ab06d12fbc36c4ebc 1.应用场景 不超卖,也要考虑性能问题(场景) 2.常见面试问题: sync出…...
【Oracle APEX开发小技巧12】
有如下需求: 有一个问题反馈页面,要实现在apex页面展示能直观看到反馈时间超过7天未处理的数据,方便管理员及时处理反馈。 我的方法:直接将逻辑写在SQL中,这样可以直接在页面展示 完整代码: SELECTSF.FE…...
React Native 开发环境搭建(全平台详解)
React Native 开发环境搭建(全平台详解) 在开始使用 React Native 开发移动应用之前,正确设置开发环境是至关重要的一步。本文将为你提供一份全面的指南,涵盖 macOS 和 Windows 平台的配置步骤,如何在 Android 和 iOS…...
屋顶变身“发电站” ,中天合创屋面分布式光伏发电项目顺利并网!
5月28日,中天合创屋面分布式光伏发电项目顺利并网发电,该项目位于内蒙古自治区鄂尔多斯市乌审旗,项目利用中天合创聚乙烯、聚丙烯仓库屋面作为场地建设光伏电站,总装机容量为9.96MWp。 项目投运后,每年可节约标煤3670…...
ETLCloud可能遇到的问题有哪些?常见坑位解析
数据集成平台ETLCloud,主要用于支持数据的抽取(Extract)、转换(Transform)和加载(Load)过程。提供了一个简洁直观的界面,以便用户可以在不同的数据源之间轻松地进行数据迁移和转换。…...
Neo4j 集群管理:原理、技术与最佳实践深度解析
Neo4j 的集群技术是其企业级高可用性、可扩展性和容错能力的核心。通过深入分析官方文档,本文将系统阐述其集群管理的核心原理、关键技术、实用技巧和行业最佳实践。 Neo4j 的 Causal Clustering 架构提供了一个强大而灵活的基石,用于构建高可用、可扩展且一致的图数据库服务…...
html css js网页制作成品——HTML+CSS榴莲商城网页设计(4页)附源码
目录 一、👨🎓网站题目 二、✍️网站描述 三、📚网站介绍 四、🌐网站效果 五、🪓 代码实现 🧱HTML 六、🥇 如何让学习不再盲目 七、🎁更多干货 一、👨…...
JVM虚拟机:内存结构、垃圾回收、性能优化
1、JVM虚拟机的简介 Java 虚拟机(Java Virtual Machine 简称:JVM)是运行所有 Java 程序的抽象计算机,是 Java 语言的运行环境,实现了 Java 程序的跨平台特性。JVM 屏蔽了与具体操作系统平台相关的信息,使得 Java 程序只需生成在 JVM 上运行的目标代码(字节码),就可以…...
vulnyx Blogger writeup
信息收集 arp-scan nmap 获取userFlag 上web看看 一个默认的页面,gobuster扫一下目录 可以看到扫出的目录中得到了一个有价值的目录/wordpress,说明目标所使用的cms是wordpress,访问http://192.168.43.213/wordpress/然后查看源码能看到 这…...
在Mathematica中实现Newton-Raphson迭代的收敛时间算法(一般三次多项式)
考察一般的三次多项式,以r为参数: p[z_, r_] : z^3 (r - 1) z - r; roots[r_] : z /. Solve[p[z, r] 0, z]; 此多项式的根为: 尽管看起来这个多项式是特殊的,其实一般的三次多项式都是可以通过线性变换化为这个形式…...
