当前位置: 首页 > news >正文

Footprint Analytics 助力 Core 区块链实现数据效率突破

Footprint&CORE.jpg

Core 是一个基于比特币并兼容 EVM 的 Layer 1 区块链,正通过其创新解决方案引革新特币金融。作为首个引入非托管 BTC 质押协议及全球首个发行收益型 BTC ETP 产品的区块链,Core 站在了区块链技术的最前沿。通过利用超过 50% 的比特币挖矿哈希算力,该网络不仅强化了自身的安全性,还进一步加深了与比特币的紧密联系,有超过 4,700 个 BTC 以原生方式质押,以解锁比特币的更多效用与奖励。

Core 面临的挑战:应对数据分析和运营效率低下

为促进项目增长并激励 Core 生态系统的蓬勃发展,网络参与者和贡献者亟需基于数据的决策支持。然而,多个关键挑战随之浮现:

  • 数据分析和支持存在明显缺口:自 2023 年下半年以来,比特币扩容解决方案的激增凸显了比特币生态系统中对专业数据支持的迫切需求。

  • 低效的数据管理方法:Core 桥接(Bridge)支持多链、多资产转移,但当前数据汇总与分析的方法,如手动在 Excel 中记录,既繁琐又低效。庞大的数据量,尤其是超过百万的 Core 桥接用户,往往超出了 Excel 的处理能力。

  • 资源密集型的内部解决方案:为维持生态系统的持续成长,详尽的数据分析及数据驱动决策至关重要。为此组建内部团队将耗费大量资源,包括约十名全职员工,涵盖开发、数据工程及分析等多个岗位。

为什么 Core 选择了 Footprint Analytics?

Footprint Analytics 提供的多链数据分析服务完美契合了 Core 的开源价值观。该平台提供最先进的公开区块链数据解决方案,为跨链、跨协议及跨领域的统一数据湖提供无缝访问。凭借在索引超过 30 条区块链(包括非 EVM 链)方面的丰富经验,其平台集成了先进的 BI 工具及多种 API 输出选项,以满足 Core 网络中不同参与者、贡献者及场景下的多样化数据需求。

此外,Footprint Analytics 还是首批为比特币生态系统提供数据分析支持的平台之一,其客户群已涵盖 Merlin、Rootstock 等,并持续吸引更多区块链加入其平台。

解决方案与可衡量成果

Footprint Analytics 针对 Core 区块链面临的数据挑战,提供了高效且全面的解决方案:

Solutions.png

  • 快速集成:在一个月内完成了从需求收集到测试的全过程集成。

  • 全面的数据管理:提供可视化分析仪表板与数据 API,有效解决了紧迫的数据问题,并提升了 Core 生态系统的透明度。Core 社区现可访问实时更新的仪表板,深入分析多链桥接数据,包括桥接者、桥接余额、桥接交易及桥接资金的流入流出等关键指标。

Core Client Story -  Image 2.png

  • 专家分析师支持:为 Core 社区提供了掌握高效数据分析技能所需的支持。面对桥接数据趋势的突然变化,社区内的分析师能迅速识别潜在问题,执行逐步深入的分析,并精确定位到相关链、代币、地址及交易。这一能力使 Core 的参与者和贡献者能够迅速而有效地做出明智决策。

  • 运营效率的提升:合作显著提高了 Core 参与者和贡献者的运营效率。如今,检索 Core 上超过一百万用户的链上数据仅需几分钟即可完成。

结论

Core 区块链与 Footprint Analytics 的合作对于提升运营效率和透明度具有重要意义。通过优化数据处理流程并提供关键洞察,Footprint Analytics 助力 Core 生态系统的参与者能够专注于战略增长与创新。此次合作不仅减轻了对广泛内部资源的需求,还在 Core 社区内培育了数据驱动的文化,赋予参与者和贡献者更强的决策能力,共同推动比特币生态系统的繁荣发展。

———————————

关于 Footprint Analytics 

Footprint Analytics 是一个全面的区块链数据分析平台,为Web3生态系统中的企业和项目简化复杂分析。它提供定制化解决方案,消除了对广泛专业知识和基础设施维护的需求。该平台提供旨在帮助逐步建立和管理社区的长期增长工具,强调可持续增长和用户忠诚度。通过结合强大的分析工具和社区管理工具,Footprint Analytics 使项目能够有效利用区块链数据进行决策和增长策略,涵盖 GameFi、NFT 和 DeFi 等各个领域。

官网 | X / 推特 | Telegram | Discord

相关文章:

Footprint Analytics 助力 Core 区块链实现数据效率突破

Core 是一个基于比特币并兼容 EVM 的 Layer 1 区块链,正通过其创新解决方案引革新特币金融。作为首个引入非托管 BTC 质押协议及全球首个发行收益型 BTC ETP 产品的区块链,Core 站在了区块链技术的最前沿。通过利用超过 50% 的比特币挖矿哈希算力&#x…...

从零搭建pytorch模型教程(八)实践部分(二)目标检测数据集格式转换

前言 图像目标检测领域有一个非常著名的数据集叫做COCO,基本上现在在目标检测领域发论文,COCO是不可能绕过的Benchmark。因此许多的开源目标检测算法框架都会支持解析COCO数据集格式。通过将其他数据集格式转换成COCO格式可以无痛的使用这些开源框架来训…...

MYSQL(2) 高级查询

文章目录 概述高级查询基础查询条件查询范围查询判空查询模糊查询分页查询查询后排序分组查询 小结 概述 接上篇,上篇写到增删改查。这篇继续。 高级查询 基础查询 -- 全部查询 select * from student; -- 只查询部分字段 select sname, class_id from student;…...

小程序的运营方法:从入门到精通

随着科技的快速发展,小程序已成为我们日常生活和工作中不可或缺的一部分。小程序无需下载安装,即用即走的特点深受用户喜爱。那么,如何运营好一个小程序呢?下面就为大家分享一些小程序的运营方法。 一、明确目标用户 在运营小程序…...

【优秀python算法毕设】基于python时间序列模型分析气温变化趋势的设计与实现

1 绪论 1.1 研究背景与意义 在气候变化日益受到全球关注的背景下,天气气温的变化已经对人们的生活各方面都产生了影响,人们在外出时大多都会在手机上看看天气如何,根据天气的变化来决定衣物的穿着和出行的安排。[1]如今手机能提供的信息已经…...

掌握 Symfony 路由系统:配置与管理

掌握 Symfony 路由系统:配置与管理 Symfony 是一个非常流行的 PHP 框架,而路由系统是 Symfony 框架的核心组件之一。通过理解和掌握 Symfony 的路由系统,开发者可以更高效地配置和管理应用程序的 URL 结构,从而更好地控制应用程序…...

OpenTeleVision复现及机器人迁移

相关信息 标题 Open-TeleVision: Teleoperation with Immersive Active Visual Feedback作者 Xuxin Cheng1 Jialong Li1 Shiqi Yang1 Ge Yang2 Xiaolong Wang1 UC San Diego1 MIT2主页 https://robot-tv.github.io/链接 https://robot-tv.github.io/resources/television.pdf代…...

气膜足球馆:经济高效的室内足球场馆解决方案—轻空间

如果你有一片足球场,想要建一个室内的足球馆,为什么不考虑一下气膜建筑呢?气膜建筑以其独特的优势和高性价比,成为现代体育场馆建设中的一匹黑马。它不仅具有传统建筑无法比拟的经济效益和快速施工优势,还在智能控制、…...

Vue3二次封装axios

官网: https://www.axios-http.cn/docs/interceptors steps1: 安装 npm install axios -ssteps2: /src/api/request.js 文件 >>> 拦截器 import axios from axios // 如果没用element-plus就不引入 import { ElMessage } from element-plusconst service axios.cre…...

【MetaGPT系列】【MetaGPT完全实践宝典——多智能体实践】

目录 前言一、智能体1-1、Agent概述1-2、Agent与ChatGPT的区别 二、多智能体框架MetaGPT2-1、安装&配置2-2、使用已有的Agent(ProductManager)2-3、多智能体系统介绍2-4、多智能体案例分析2-4-1、构建智能体团队2-4-2、动作/行为 定义2-4-3、角色/智…...

C#中GridControl的数据源双向绑定

1. 什么是双向数据绑定? 双向数据绑定是一种允许我们创建持久连接的技术,使模型数据和用户界面(UI)之间的交互能够自动同步。这意味着当模型数据发生变化时,UI会自动更新,反之亦然。这种双向数据绑定极大地简化了UI和模型数据之间…...

sklearn详细基础教程(科普篇)

Scikit-learn(简称sklearn)是Python中一个强大且易于使用的机器学习库,它基于NumPy、SciPy和matplotlib等Python库构建,提供了丰富的工具集,包括数据预处理、特征选择、模型训练、评估和预测等功能。以下是sklearn的详…...

el-table列的显示与隐藏

需求:实现 表字段的显示与隐藏。效果图 代码实现 写在前面 首先 我部分字段有自定义的排序逻辑,和默认值或者 数据的计算 所以是不能简单的使用 v-for 循环column 。然后 我需要默认展示一部分字段,并且 当表无数据时 提示不能 显示隐藏 …...

使用命令快速删除项目中的node_modules

描述 直接调用了系统自带的命令行工具,无需额外安装任何第三方库或工具。 同时,这些命令经过优化,能够快速处理大量文件,从而实现快速删除。 步骤 1、进入项目文件夹; 2、如果是Mac/Linux 环境下,执行&a…...

leetCode15三数之和(双指针)

目录 1、题目 2、思路 3、代码 4、总结 1、题目 给你一个由 n 个整数组成的数组 nums ,和一个目标值 target 。请你找出并返回满足下述全部条件且不重复的四元组 [nums[a], nums[b], nums[c], nums[d]] (若两个四元组元素一一对应,则认为…...

数据挖掘-数据预处理

来自🥬🐶程序员 Truraly | 田园 的博客,最新文章首发于:田园幻想乡 | 原文链接 | github (欢迎关注) 文章目录 3.3.1 数据的中心趋势平均数和加权平均数众数,中位数和均值描述数据的离散程度 &a…...

【调试笔记-20240723-Linux-gitee 仓库同步 github 仓库,并保持所有访问链接调整为指向 gitee 仓库的 URL】

调试笔记-系列文章目录 调试笔记-20240723-Linux-gitee 仓库同步 github 仓库,并保持所有访问链接调整为指向 gitee 仓库的 URL 文章目录 调试笔记-系列文章目录调试笔记-20240723-Linux-gitee 仓库同步 github 仓库,并保持所有访问链接调整为指向 gite…...

《GPT-4o mini:开启开发与创新的新纪元》

在科技发展的快速进程中,OpenAI 推出的 GPT-4o mini 模型如同一阵春风,给开发者们带来了新的希望和机遇。它以其卓越的性能和极具吸引力的价格,成为了行业内热议的焦点。 当我首次听闻 GPT-4o mini 的消息时,内心充满了好奇与期待…...

生成树协议配置与分析

前言:本博客仅作记录学习使用,部分图片出自网络,如有侵犯您的权益,请联系删除 一、相关知识 1、生成树协议简介 生成树协议(STP)是一种避免数据链路层逻辑环路的机制,它通过信息交互识别环路并…...

Golang | Leetcode Golang题解之第287题寻找重复数

题目: 题解: func findDuplicate(nums []int) int {slow, fast : 0, 0for slow, fast nums[slow], nums[nums[fast]]; slow ! fast; slow, fast nums[slow], nums[nums[fast]] { }slow 0for slow ! fast {slow nums[slow]fast nums[fast]}return s…...

【音视频SDL2入门】创建第一个窗口

文章目录 前言创建窗口的流程需要使用的函数1. 初始化 SDL 库2. 创建 SDL 窗口3. 获取与窗口关联的表面SDL_FillRect 函数介绍4. 更新窗口表面5. 延迟一定时间6. 销毁窗口并退出 SDL 库示例代码总结 前言 SDL2(Simple DirectMedia Layer)是一个跨平台的…...

《置身事内:中国政府与经济发展》生活过得好一点,比大多数宏伟更宏伟

《置身事内:中国政府与经济发展》生活过得好一点,比大多数宏伟更宏伟 兰小欢,复旦大学中国社会主义市场经济研究中心、经济学院副教授,上海国际金融与经济研究院研究员。美国弗吉尼亚大学经济学博士。 上海人民出版社 文章目录 《…...

MongoDB教程(十八):MongoDB MapReduce

💝💝💝首先,欢迎各位来到我的博客,很高兴能够在这里和您见面!希望您在这里不仅可以有所收获,同时也能感受到一份轻松欢乐的氛围,祝你生活愉快! 文章目录 引言一、MapRed…...

HTML前端面试题之<iframe>标签

面试题:iframe 标签的作用是什么?有哪些优缺点 ? 讲真,刷这道面试题之前我根本没有接触过iframe,网课没讲过,项目实战没用过,但却在面试题里出现了!好吧,我只能说:前端路漫漫&…...

Docker-Compose实现MySQL之主从复制

1. 主服务器(IP:192.168.186.77) 1.1 docker-compose.yml services:mysql-master:image: mysql:latest # 使用最新版本的 MySQL 镜像container_name: mysql-master # 容器的名称environment:MYSQL_ROOT_PASSWORD: 123456 # MySQL root 用户的密码MYSQL_DATABASE: masterd…...

jetson显卡没有加速,而是在用cpu推理?

jetson的库,特别是使用显卡的库,大多需要单独安装 大概率是重装了pytorch,可以使用jetson官网的pytorch! 下面是官网的链接 PyTorch for Jetson - Announcements - NVIDIA Developer Forums 安装完成之后先使用命令查看是否安…...

Linux下如何安装配置Fail2ban防护工具

Fail2ban是一款在Linux服务器上用于保护系统免受恶意攻击的防护工具。它通过监视系统日志,检测到多次失败的登录尝试或其他恶意行为后,会自动将攻击源的IP地址加入防火墙的黑名单,从而阻止攻击者进一步访问服务器。本文将介绍如何在Linux系统…...

js的深浅拷贝

深浅拷贝是编程中对数据复制的两种不同方式,它们在处理对象和数组等复合数据结构时尤为重要。下面将详细解释这两种拷贝方式。 浅拷贝(Shallow Copy) 浅拷贝创建了原始对象的一个新实例,但这个新实例的属性只是原始对象属性的引…...

实验八: 彩色图像处理

目录 一、实验目的 二、实验原理 1. 常见彩色图像格式 2. 伪彩色图像 3. 彩色图像滤波 三、实验内容 四、源程序和结果 (1) 主程序(matlab (2) 函数FalseRgbTransf (3) 函数hsi2rgb (4) 函数rgb2hsi (5) 函数GrayscaleFilter (6) 函数RgbFilter 五、结果分析 1. …...

Python酷库之旅-第三方库Pandas(048)

目录 一、用法精讲 171、pandas.Series.nlargest方法 171-1、语法 171-2、参数 171-3、功能 171-4、返回值 171-5、说明 171-6、用法 171-6-1、数据准备 171-6-2、代码示例 171-6-3、结果输出 172、pandas.Series.nsmallest方法 172-1、语法 172-2、参数 172-3、…...