昇思25天学习打卡营第17天|计算机视觉
昇思25天学习打卡营第17天
文章目录
- 昇思25天学习打卡营第17天
- ShuffleNet图像分类
- ShuffleNet网络介绍
- 模型架构
- Pointwise Group Convolution
- Channel Shuffle
- ShuffleNet模块
- 构建ShuffleNet网络
- 模型训练和评估
- 训练集准备与加载
- 模型训练
- 模型评估
- 模型预测
- 打卡记录
ShuffleNet图像分类
当前案例不支持在GPU设备上静态图模式运行,其他模式运行皆支持。
ShuffleNet网络介绍
ShuffleNetV1是旷视科技提出的一种计算高效的CNN模型,和MobileNet, SqueezeNet等一样主要应用在移动端,所以模型的设计目标就是利用有限的计算资源来达到最好的模型精度。ShuffleNetV1的设计核心是引入了两种操作:Pointwise Group Convolution和Channel Shuffle,这在保持精度的同时大大降低了模型的计算量。因此,ShuffleNetV1和MobileNet类似,都是通过设计更高效的网络结构来实现模型的压缩和加速。
了解ShuffleNet更多详细内容,详见论文ShuffleNet。
如下图所示,ShuffleNet在保持不低的准确率的前提下,将参数量几乎降低到了最小,因此其运算速度较快,单位参数量对模型准确率的贡献非常高。
图片来源:Bianco S, Cadene R, Celona L, et al. Benchmark analysis of representative deep neural network architectures[J]. IEEE access, 2018, 6: 64270-64277.
模型架构
ShuffleNet最显著的特点在于对不同通道进行重排来解决Group Convolution带来的弊端。通过对ResNet的Bottleneck单元进行改进,在较小的计算量的情况下达到了较高的准确率。
Pointwise Group Convolution
Group Convolution(分组卷积)原理如下图所示,相比于普通的卷积操作,分组卷积的情况下,每一组的卷积核大小为in_channels/g*k*k,一共有g组,所有组共有(in_channels/g*k*k)*out_channels个参数,是正常卷积参数的1/g。分组卷积中,每个卷积核只处理输入特征图的一部分通道,其优点在于参数量会有所降低,但输出通道数仍等于卷积核的数量。
图片来源:Huang G, Liu S, Van der Maaten L, et al. Condensenet: An efficient densenet using learned group convolutions[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2018: 2752-2761.
Depthwise Convolution(深度可分离卷积)将组数g分为和输入通道相等的in_channels
,然后对每一个in_channels
做卷积操作,每个卷积核只处理一个通道,记卷积核大小为1*k*k,则卷积核参数量为:in_channels*k*k,得到的feature maps通道数与输入通道数相等;
Pointwise Group Convolution(逐点分组卷积)在分组卷积的基础上,令每一组的卷积核大小为 1 × 1 1\times 1 1×1,卷积核参数量为(in_channels/g*1*1)*out_channels。
%%capture captured_output
# 实验环境已经预装了mindspore==2.2.14,如需更换mindspore版本,可更改下面mindspore的版本号
!pip uninstall mindspore -y
!pip install -i https://pypi.mirrors.ustc.edu.cn/simple mindspore==2.2.14
# 查看当前 mindspore 版本
!pip show mindspore
from mindspore import nn
import mindspore.ops as ops
from mindspore import Tensorclass GroupConv(nn.Cell):def __init__(self, in_channels, out_channels, kernel_size,stride, pad_mode="pad", pad=0, groups=1, has_bias=False):super(GroupConv, self).__init__()self.groups = groupsself.convs = nn.CellList()for _ in range(groups):self.convs.append(nn.Conv2d(in_channels // groups, out_channels // groups,kernel_size=kernel_size, stride=stride, has_bias=has_bias,padding=pad, pad_mode=pad_mode, group=1, weight_init='xavier_uniform'))def construct(self, x):features = ops.split(x, split_size_or_sections=int(len(x[0]) // self.groups), axis=1)outputs = ()for i in range(self.groups):outputs = outputs + (self.convs[i](features[i].astype("float32")),)out = ops.cat(outputs, axis=1)return out
Channel Shuffle
Group Convolution的弊端在于不同组别的通道无法进行信息交流,堆积GConv层后一个问题是不同组之间的特征图是不通信的,这就好像分成了g个互不相干的道路,每一个人各走各的,这可能会降低网络的特征提取能力。这也是Xception,MobileNet等网络采用密集的1x1卷积(Dense Pointwise Convolution)的原因。
为了解决不同组别通道“近亲繁殖”的问题,ShuffleNet优化了大量密集的1x1卷积(在使用的情况下计算量占用率达到了惊人的93.4%),引入Channel Shuffle机制(通道重排)。这项操作直观上表现为将不同分组通道均匀分散重组,使网络在下一层能处理不同组别通道的信息。
如下图所示,对于g组,每组有n个通道的特征图,首先reshape成g行n列的矩阵,再将矩阵转置成n行g列,最后进行flatten操作,得到新的排列。这些操作都是可微分可导的且计算简单,在解决了信息交互的同时符合了ShuffleNet轻量级网络设计的轻量特征。
为了阅读方便,将Channel Shuffle的代码实现放在下方ShuffleNet模块的代码中。
ShuffleNet模块
如下图所示,ShuffleNet对ResNet中的Bottleneck结构进行由(a)到(b), ©的更改:
-
将开始和最后的 1 × 1 1\times 1 1×1卷积模块(降维、升维)改成Point Wise Group Convolution;
-
为了进行不同通道的信息交流,再降维之后进行Channel Shuffle;
-
降采样模块中, 3 × 3 3 \times 3 3×3 Depth Wise Convolution的步长设置为2,长宽降为原来的一般,因此shortcut中采用步长为2的 3 × 3 3\times 3 3×3平均池化,并把相加改成拼接。
class ShuffleV1Block(nn.Cell):def __init__(self, inp, oup, group, first_group, mid_channels, ksize, stride):super(ShuffleV1Block, self).__init__()self.stride = stridepad = ksize // 2self.group = groupif stride == 2:outputs = oup - inpelse:outputs = oupself.relu = nn.ReLU()branch_main_1 = [GroupConv(in_channels=inp, out_channels=mid_channels,kernel_size=1, stride=1, pad_mode="pad", pad=0,groups=1 if first_group else group),nn.BatchNorm2d(mid_channels),nn.ReLU(),]branch_main_2 = [nn.Conv2d(mid_channels, mid_channels, kernel_size=ksize, stride=stride,pad_mode='pad', padding=pad, group=mid_channels,weight_init='xavier_uniform', has_bias=False),nn.BatchNorm2d(mid_channels),GroupConv(in_channels=mid_channels, out_channels=outputs,kernel_size=1, stride=1, pad_mode="pad", pad=0,groups=group),nn.BatchNorm2d(outputs),]self.branch_main_1 = nn.SequentialCell(branch_main_1)self.branch_main_2 = nn.SequentialCell(branch_main_2)if stride == 2:self.branch_proj = nn.AvgPool2d(kernel_size=3, stride=2, pad_mode='same')def construct(self, old_x):left = old_xright = old_xout = old_xright = self.branch_main_1(right)if self.group > 1:right = self.channel_shuffle(right)right = self.branch_main_2(right)if self.stride == 1:out = self.relu(left + right)elif self.stride == 2:left = self.branch_proj(left)out = ops.cat((left, right), 1)out = self.relu(out)return outdef channel_shuffle(self, x):batchsize, num_channels, height, width = ops.shape(x)group_channels = num_channels // self.groupx = ops.reshape(x, (batchsize, group_channels, self.group, height, width))x = ops.transpose(x, (0, 2, 1, 3, 4))x = ops.reshape(x, (batchsize, num_channels, height, width))return x
构建ShuffleNet网络
ShuffleNet网络结构如下图所示,以输入图像 224 × 224 224 \times 224 224×224,组数3(g = 3)为例,首先通过数量24,卷积核大小为 3 × 3 3 \times 3 3×3,stride为2的卷积层,输出特征图大小为 112 × 112 112 \times 112 112×112,channel为24;然后通过stride为2的最大池化层,输出特征图大小为 56 × 56 56 \times 56 56×56,channel数不变;再堆叠3个ShuffleNet模块(Stage2, Stage3, Stage4),三个模块分别重复4次、8次、4次,其中每个模块开始先经过一次下采样模块(上图©),使特征图长宽减半,channel翻倍(Stage2的下采样模块除外,将channel数从24变为240);随后经过全局平均池化,输出大小为 1 × 1 × 960 1 \times 1 \times 960 1×1×960,再经过全连接层和softmax,得到分类概率。
class ShuffleNetV1(nn.Cell):def __init__(self, n_class=1000, model_size='2.0x', group=3):super(ShuffleNetV1, self).__init__()print('model size is ', model_size)self.stage_repeats = [4, 8, 4]self.model_size = model_sizeif group == 3:if model_size == '0.5x':self.stage_out_channels = [-1, 12, 120, 240, 480]elif model_size == '1.0x':self.stage_out_channels = [-1, 24, 240, 480, 960]elif model_size == '1.5x':self.stage_out_channels = [-1, 24, 360, 720, 1440]elif model_size == '2.0x':self.stage_out_channels = [-1, 48, 480, 960, 1920]else:raise NotImplementedErrorelif group == 8:if model_size == '0.5x':self.stage_out_channels = [-1, 16, 192, 384, 768]elif model_size == '1.0x':self.stage_out_channels = [-1, 24, 384, 768, 1536]elif model_size == '1.5x':self.stage_out_channels = [-1, 24, 576, 1152, 2304]elif model_size == '2.0x':self.stage_out_channels = [-1, 48, 768, 1536, 3072]else:raise NotImplementedErrorinput_channel = self.stage_out_channels[1]self.first_conv = nn.SequentialCell(nn.Conv2d(3, input_channel, 3, 2, 'pad', 1, weight_init='xavier_uniform', has_bias=False),nn.BatchNorm2d(input_channel),nn.ReLU(),)self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, pad_mode='same')features = []for idxstage in range(len(self.stage_repeats)):numrepeat = self.stage_repeats[idxstage]output_channel = self.stage_out_channels[idxstage + 2]for i in range(numrepeat):stride = 2 if i == 0 else 1first_group = idxstage == 0 and i == 0features.append(ShuffleV1Block(input_channel, output_channel,group=group, first_group=first_group,mid_channels=output_channel // 4, ksize=3, stride=stride))input_channel = output_channelself.features = nn.SequentialCell(features)self.globalpool = nn.AvgPool2d(7)self.classifier = nn.Dense(self.stage_out_channels[-1], n_class)def construct(self, x):x = self.first_conv(x)x = self.maxpool(x)x = self.features(x)x = self.globalpool(x)x = ops.reshape(x, (-1, self.stage_out_channels[-1]))x = self.classifier(x)return x
模型训练和评估
采用CIFAR-10数据集对ShuffleNet进行预训练。
训练集准备与加载
采用CIFAR-10数据集对ShuffleNet进行预训练。CIFAR-10共有60000张32*32的彩色图像,均匀地分为10个类别,其中50000张图片作为训练集,10000图片作为测试集。如下示例使用mindspore.dataset.Cifar10Dataset
接口下载并加载CIFAR-10的训练集。目前仅支持二进制版本(CIFAR-10 binary version)。
from download import downloadurl = "https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/datasets/cifar-10-binary.tar.gz"download(url, "./dataset", kind="tar.gz", replace=True)
import mindspore as ms
from mindspore.dataset import Cifar10Dataset
from mindspore.dataset import vision, transformsdef get_dataset(train_dataset_path, batch_size, usage):image_trans = []if usage == "train":image_trans = [vision.RandomCrop((32, 32), (4, 4, 4, 4)),vision.RandomHorizontalFlip(prob=0.5),vision.Resize((224, 224)),vision.Rescale(1.0 / 255.0, 0.0),vision.Normalize([0.4914, 0.4822, 0.4465], [0.2023, 0.1994, 0.2010]),vision.HWC2CHW()]elif usage == "test":image_trans = [vision.Resize((224, 224)),vision.Rescale(1.0 / 255.0, 0.0),vision.Normalize([0.4914, 0.4822, 0.4465], [0.2023, 0.1994, 0.2010]),vision.HWC2CHW()]label_trans = transforms.TypeCast(ms.int32)dataset = Cifar10Dataset(train_dataset_path, usage=usage, shuffle=True)dataset = dataset.map(image_trans, 'image')dataset = dataset.map(label_trans, 'label')dataset = dataset.batch(batch_size, drop_remainder=True)return datasetdataset = get_dataset("./dataset/cifar-10-batches-bin", 128, "train")
batches_per_epoch = dataset.get_dataset_size()
模型训练
本节用随机初始化的参数做预训练。首先调用ShuffleNetV1
定义网络,参数量选择"2.0x"
,并定义损失函数为交叉熵损失,学习率经过4轮的warmup
后采用余弦退火,优化器采用Momentum
。最后用train.model
中的Model
接口将模型、损失函数、优化器封装在model
中,并用model.train()
对网络进行训练。将ModelCheckpoint
、CheckpointConfig
、TimeMonitor
和LossMonitor
传入回调函数中,将会打印训练的轮数、损失和时间,并将ckpt文件保存在当前目录下。
import time
import mindspore
import numpy as np
from mindspore import Tensor, nn
from mindspore.train import ModelCheckpoint, CheckpointConfig, TimeMonitor, LossMonitor, Model, Top1CategoricalAccuracy, Top5CategoricalAccuracydef train():mindspore.set_context(mode=mindspore.PYNATIVE_MODE, device_target="Ascend")net = ShuffleNetV1(model_size="2.0x", n_class=10)loss = nn.CrossEntropyLoss(weight=None, reduction='mean', label_smoothing=0.1)min_lr = 0.0005base_lr = 0.05lr_scheduler = mindspore.nn.cosine_decay_lr(min_lr,base_lr,batches_per_epoch*250,batches_per_epoch,decay_epoch=250)lr = Tensor(lr_scheduler[-1])optimizer = nn.Momentum(params=net.trainable_params(), learning_rate=lr, momentum=0.9, weight_decay=0.00004, loss_scale=1024)loss_scale_manager = ms.amp.FixedLossScaleManager(1024, drop_overflow_update=False)model = Model(net, loss_fn=loss, optimizer=optimizer, amp_level="O3", loss_scale_manager=loss_scale_manager)callback = [TimeMonitor(), LossMonitor()]save_ckpt_path = "./"config_ckpt = CheckpointConfig(save_checkpoint_steps=batches_per_epoch, keep_checkpoint_max=5)ckpt_callback = ModelCheckpoint("shufflenetv1", directory=save_ckpt_path, config=config_ckpt)callback += [ckpt_callback]print("============== Starting Training ==============")start_time = time.time()# 由于时间原因,epoch = 5,可根据需求进行调整model.train(5, dataset, callbacks=callback)use_time = time.time() - start_timehour = str(int(use_time // 60 // 60))minute = str(int(use_time // 60 % 60))second = str(int(use_time % 60))print("total time:" + hour + "h " + minute + "m " + second + "s")print("============== Train Success ==============")if __name__ == '__main__':train()
训练好的模型保存在当前目录的shufflenetv1-5_390.ckpt
中,用作评估。
模型评估
在CIFAR-10的测试集上对模型进行评估。
设置好评估模型的路径后加载数据集,并设置Top 1, Top 5的评估标准,最后用model.eval()
接口对模型进行评估。
from mindspore import load_checkpoint, load_param_into_netdef test():mindspore.set_context(mode=mindspore.GRAPH_MODE, device_target="Ascend")dataset = get_dataset("./dataset/cifar-10-batches-bin", 128, "test")net = ShuffleNetV1(model_size="2.0x", n_class=10)param_dict = load_checkpoint("shufflenetv1-5_390.ckpt")load_param_into_net(net, param_dict)net.set_train(False)loss = nn.CrossEntropyLoss(weight=None, reduction='mean', label_smoothing=0.1)eval_metrics = {'Loss': nn.Loss(), 'Top_1_Acc': Top1CategoricalAccuracy(),'Top_5_Acc': Top5CategoricalAccuracy()}model = Model(net, loss_fn=loss, metrics=eval_metrics)start_time = time.time()res = model.eval(dataset, dataset_sink_mode=False)use_time = time.time() - start_timehour = str(int(use_time // 60 // 60))minute = str(int(use_time // 60 % 60))second = str(int(use_time % 60))log = "result:" + str(res) + ", ckpt:'" + "./shufflenetv1-5_390.ckpt" \+ "', time: " + hour + "h " + minute + "m " + second + "s"print(log)filename = './eval_log.txt'with open(filename, 'a') as file_object:file_object.write(log + '\n')if __name__ == '__main__':test()结果输出:
result:{'Loss': 1.567653516928355, 'Top_1_Acc': 0.5177283653846154, 'Top_5_Acc': 0.9352964743589743}, ckpt:'./shufflenetv1-5_390.ckpt', time: 0h 1m 33s
模型预测
在CIFAR-10的测试集上对模型进行预测,并将预测结果可视化。
import mindspore
import matplotlib.pyplot as plt
import mindspore.dataset as dsnet = ShuffleNetV1(model_size="2.0x", n_class=10)
show_lst = []
param_dict = load_checkpoint("shufflenetv1-5_390.ckpt")
load_param_into_net(net, param_dict)
model = Model(net)
dataset_predict = ds.Cifar10Dataset(dataset_dir="./dataset/cifar-10-batches-bin", shuffle=False, usage="train")
dataset_show = ds.Cifar10Dataset(dataset_dir="./dataset/cifar-10-batches-bin", shuffle=False, usage="train")
dataset_show = dataset_show.batch(16)
show_images_lst = next(dataset_show.create_dict_iterator())["image"].asnumpy()
image_trans = [vision.RandomCrop((32, 32), (4, 4, 4, 4)),vision.RandomHorizontalFlip(prob=0.5),vision.Resize((224, 224)),vision.Rescale(1.0 / 255.0, 0.0),vision.Normalize([0.4914, 0.4822, 0.4465], [0.2023, 0.1994, 0.2010]),vision.HWC2CHW()]
dataset_predict = dataset_predict.map(image_trans, 'image')
dataset_predict = dataset_predict.batch(16)
class_dict = {0:"airplane", 1:"automobile", 2:"bird", 3:"cat", 4:"deer", 5:"dog", 6:"frog", 7:"horse", 8:"ship", 9:"truck"}
# 推理效果展示(上方为预测的结果,下方为推理效果图片)
plt.figure(figsize=(16, 5))
predict_data = next(dataset_predict.create_dict_iterator())
output = model.predict(ms.Tensor(predict_data['image']))
pred = np.argmax(output.asnumpy(), axis=1)
index = 0
for image in show_images_lst:plt.subplot(2, 8, index+1)plt.title('{}'.format(class_dict[pred[index]]))index += 1plt.imshow(image)plt.axis("off")
plt.show()
打卡记录
相关文章:

昇思25天学习打卡营第17天|计算机视觉
昇思25天学习打卡营第17天 文章目录 昇思25天学习打卡营第17天ShuffleNet图像分类ShuffleNet网络介绍模型架构Pointwise Group ConvolutionChannel ShuffleShuffleNet模块构建ShuffleNet网络 模型训练和评估训练集准备与加载模型训练模型评估模型预测 打卡记录 ShuffleNet图像分…...

Windows图形界面(GUI)-MFC-C/C++ - 键鼠操作
公开视频 -> 链接点击跳转公开课程博客首页 -> 链接点击跳转博客主页 目录 MFC鼠标 派发流程 鼠标消息(客户区) 鼠标消息(非客户) 坐标处理 客户区 非客户 坐标转换 示例代码 MFC键盘 击键消息 虚拟键代码 键状态 MFC鼠标 派发流程 消息捕获&#…...

Angular 18.2.0 的新功能增强和创新
一.Angular 增强功能 Angular 是一个以支持开发强大的 Web 应用程序而闻名的平台,最近发布了 18.2.0 版本。此更新带来了许多新功能和改进,进一步增强了其功能和开发人员体验。在本文中,我们将深入探讨 Angular 18.2.0 为开发人员社区提供的…...

matlab 小数取余 rem 和 mod有 bug
目录 前言Matlab取余函数1 mod 函数1.1 命令行输入1.2 命令行输出 2 rem 函数2.1 命令行输入2.2 命令行输出 分析原因注意 前言 在 Matlab 代码中mod(0.11, 0.1) < 0.01 判断为真,mod(1.11, 0.1) < 0.01判断为假,导致出现意料外的结果。 结果发现…...

Avalonia中的数据模板
文章目录 1. 介绍和概述什么是数据模板:数据模板的用途:2. 定义数据模板在XAML中定义数据模板:在代码中定义数据模板:3. 使用数据模板在控件中使用数据模板:数据模板选择器:定义数据模板选择器:在XAML中使用数据模板选择器:4. 复杂数据模板使用嵌套数据模板:使用模板绑…...

Sqlmap中文使用手册 - Techniques模块参数使用
目录 1. Techniques模块的帮助文档2. 各个参数的介绍2.1 --techniqueTECH2.2 --time-secTIMESEC2.3 --union-colsUCOLS2.4 --union-charUCHAR2.5 --union-fromUFROM2.6 --dns-domainDNS2.7 --second-urlSEC2.8 --second-reqSEC 1. Techniques模块的帮助文档 Techniques:These o…...

科普文:kubernets原理
kubernetes 已经成为容器编排领域的王者,它是基于容器的集群编排引擎,具备扩展集群、滚动升级回滚、弹性伸缩、自动治愈、服务发现等多种特性能力。 本文将带着大家快速了解 kubernetes ,了解我们谈论 kubernetes 都是在谈论什么。 一、背…...

GO-学习-02-常量
常量是不变的 const package main import "fmt"func main() {//常量定义时必须赋值const pi 3.1415926const e 2.718//一次声明多个常量const(a 1b 2c "ihan")const(n1 100n2n3)//n2,n3也是100 同时声明多个常量时,如果省略了值则表示和…...

Vue系列面试题
大家好,我是有用就扩散,有用就点赞。 1.Vue中组件间有哪些通信方式? 父子组件通信: (1)props | $emit (接收父组件数据 | 传数据给父组件) (2)ref | $refs&a…...

等级保护 总结2
网络安全等级保护解决方案的主打产品: HiSec Insight安全态势感知系统、 FireHunter6000沙箱、 SecoManager安全控制器、 HiSecEngine USG系列防火墙和HiSecEngine AntiDDoS防御系统。 华为HiSec Insight安全态势感知系统是基于商用大数据平台FusionInsight的A…...

关于Redis(热点数据缓存,分布式锁,缓存安全(穿透,击穿,雪崩));
热点数据缓存: 为了把一些经常访问的数据,放入缓存中以减少对数据库的访问频率。从而减少数据库的压力,提高程序的性能。【内存中存储】成为缓存; 缓存适合存放的数据: 查询频率高且修改频率低 数据安全性低 作为缓存的组件: redis组件 memory组件 e…...

【北京迅为】《i.MX8MM嵌入式Linux开发指南》-第三篇 嵌入式Linux驱动开发篇-第四十七章 字符设备和杂项设备总结回顾
i.MX8MM处理器采用了先进的14LPCFinFET工艺,提供更快的速度和更高的电源效率;四核Cortex-A53,单核Cortex-M4,多达五个内核 ,主频高达1.8GHz,2G DDR4内存、8G EMMC存储。千兆工业级以太网、MIPI-DSI、USB HOST、WIFI/BT…...

C#初级——枚举
枚举 枚举是一组命名整型常量。 enum 枚举名字 { 常量1, 常量2, …… 常量n }; 枚举的常量是由 , 分隔的列表。并且,在这个整型常量列表中,通常默认第一位枚举符号的值为0,此后的枚举符号的值都比前一位大1。 在将枚举赋值给 int 类型的…...

Linux 动静态库
一、动静态库 1、库的理解 库其实是给我们提供方法的实现,如上面的对于printf函数的实现就是在库中实现的,而这个库也就是c标准库,本质也是文件,也有对应的路径 2、区别 静态库是指编译链接时,把库文件的代码全部加入…...

微信小游戏之 三消(一)
首先设定一下 单个 方块 cell 类: 类定义和属性 init 方法 用于初始化方块,接收游戏实例、数据、宽度、道具类型和位置。 onWarning 方法 设置警告精灵的帧,并播放闪烁动作,用于显示方块的警告状态。 grow 方法 根据传入的方向…...

软件测试---Linux
Linux命令使用:为了将来工作中与服务器设备进行交互而准备的技能(远程连接/命令的使用)数据库的使用:MySQL,除了查询动作需要重点掌握以外,其他操作了解即可什么是虚拟机 通过虚拟化技术,在电脑…...

数据库之数据表基本操作
目录 一、创建数据表 1.创建表的语法形式 2.使用SQL语句设置约束条件 1.设置主键约束 2.设置自增约束 3.设置非空约束 4.设置唯一性约束 5.设置无符号约束 6.设置默认约束 7.设置外键约束 8.设置表的存储引擎 二、查看表结构 1.查看表基本结构 2.查看建表语句 三…...

利用OSMnx求路网最短路径并可视化(二)
书接上回,为了增加多路径的可视化效果和坐标匹配最近点来实现最短路可视化,我们使用图形化工具matplotlib结合OSMnx的绘图功能来展示整个路网图,并特别高亮显示计算出的最短路径。 多起终点最短路路径并计算距离和时间 完整代码#运行环境 P…...

双向门控循环神经网络(BiGRU)及其Python和MATLAB实现
BiGRU是一种常用的深度学习模型,用于处理序列数据的建模和预测。它是基于GRU(Gated Recurrent Unit)模型的改进版本,通过引入更多的隐藏层和增加网络的宽度,能够更好地捕捉复杂的序列数据中的模式。 背景:…...

【BUG】已解决:ERROR: Failed building wheel for jupyter-nbextensions-configurator
ERROR: Failed building wheel for jupyter-nbextensions-configurator 目录 ERROR: Failed building wheel for jupyter-nbextensions-configurator 【常见模块错误】 【解决方案】 欢迎来到英杰社区https://bbs.csdn.net/topics/617804998 欢迎来到我的主页,我…...

Unity UGUI 之 自动布局组件
本文仅作学习笔记与交流,不作任何商业用途 本文包括但不限于unity官方手册,唐老狮,麦扣教程知识,引用会标记,如有不足还请斧正 本文在发布时间选用unity 2022.3.8稳定版本,请注意分别 1.什么是自动布局组件…...

网络基础之(11)优秀学习资料
网络基础之(11)优秀学习资料 Author:Once Day Date: 2024年7月27日 漫漫长路,有人对你笑过嘛… 全系列文档可参考专栏:通信网络技术_Once-Day的博客-CSDN博客。 参考文档: 网络工程初学者的学习方法及成长之路(红…...

QT自定义无边框窗口(可移动控制和窗口大小调整)
QT是一个功能强大的跨平台开发框架,它提供了丰富的界面设计工具和组件。在界面开发中,QT窗口自带的标题栏无法满足我们的需求。我们就需要自定义无边框窗口,包括自定义标题栏和窗口大小调整功能。本文将介绍如何在QT中实现这些功能。 一、简…...

Typora 【最新1.8.6】版本安装下载教程 (轻量级 Markdown 编辑器),图文步骤详解,免费领取(软件可激活使用)
文章目录 软件介绍软件下载安装步骤激活步骤 软件介绍 Typora 是一款专为 Markdown 爱好者设计的文本编辑器,它结合了简洁的界面设计与强大的 Markdown 渲染能力,为用户提供了一个流畅、高效的写作环境。以下是对 Typora 更详细的介绍: 核心特…...

RxJava 面试题及其答案
以下是一个全面的 RxJava 面试题及其答案,涵盖了 RxJava 的各个方面,包括基本概念、操作符、线程管理、错误处理、背压处理等: 基本概念 1. RxJava 的基本概念和原理是什么? 答案: RxJava 是一个用于响应式编程的库…...

【Rust】所有权OwnerShip
什么是所有权 rust使用由编译器检查的一些规则构成的所有权系统来管理内存。且这不会影响程序的运行效率。 所有权规则 rust中每一个每一个值都有一个owner。在同一时刻,只能有一个owner。当这个owner超过范围,则该值会被丢弃。 String类型 为什么需…...

qt总结--翻金币案例
完成了一个小项目的在qt5.15.2环境下的运行,并使用NSIS editNSIS打包完成.有待改进之处:增加计时功能,随机且能通关功能,过关后选择下一关功能.打包后仅仅有安装包有图标 安装后应用图标并未改变 在qt .pro中有待改进对qt的基本操作和帮助文档有了基本的认识.对C制作小游戏有了…...

最清楚的 BIO、NIO、AIO 详解!
一、什么是 I/O? I/O 描述了计算机系统与外部设备(磁盘)之间通信的过程。 为了保证操作系统的稳定性和安全性,一个进程的地址空间划分为 用户空间(User space) 和 内核空间(Kernel space &…...

八股文学习第二天| HTTP请求报文和响应报文是怎样的,有哪些常见的字段?,HTTP有哪些请求方式?,GET请求和POST请求的区别?
1、HTTP请求报文和响应报文是怎样的,有哪些常见的字段? 答: HTTP报文分为请求报文和响应报文。 (1) 请求报文 请求报文主要由请求行、请求头、空行、请求体构成。 请求行包括如下字段: 方法(…...

C++初阶学习第四弹——类与对象(中)
目录 一. 类的默认成员函数 二.六种默认成员函数 1、构造函数 1.1 构造函数的作用 1.2 特性 1.3 默认构造函数 2、析构函数 2.1 析构函数的作用 2.2 析构函数的用法 3、拷贝构造函数 3.1 拷贝构造函数的作用 3.2 特征 3.3 默认拷贝构造函数 三.总结 类与对象&…...