Mindspore框架循环神经网络RNN模型实现情感分类|(六)模型加载和推理(情感分类模型资源下载)
Mindspore框架循环神经网络RNN模型实现情感分类
Mindspore框架循环神经网络RNN模型实现情感分类|(一)IMDB影评数据集准备
Mindspore框架循环神经网络RNN模型实现情感分类|(二)预训练词向量
Mindspore框架循环神经网络RNN模型实现情感分类|(三)RNN模型构建
Mindspore框架循环神经网络RNN模型实现情感分类|(四)损失函数与优化器
Mindspore框架循环神经网络RNN模型实现情感分类|(五)模型训练
Mindspore框架循环神经网络RNN模型实现情感分类|(六)模型加载和推理(情感分类模型资源下载)
Mindspore框架循环神经网络RNN模型实现情感分类|(七)模型导出ONNX与应用部署
一、模型资源下载
- RNN升级版LSTM模型:本项目训练好的情感分类模型-下载训练好的IMDB分类模型。
二、模型加载与推理
class RNN(nn.Cell):def __init__(self, embeddings, hidden_dim, output_dim, n_layers,bidirectional, pad_idx):super().__init__()vocab_size, embedding_dim = embeddings.shapeself.embedding = nn.Embedding(vocab_size, embedding_dim, embedding_table=ms.Tensor(embeddings),padding_idx=pad_idx)self.rnn = nn.LSTM(embedding_dim,hidden_dim,num_layers=n_layers,bidirectional=bidirectional,batch_first=True)weight_init = HeUniform(math.sqrt(5))bias_init = Uniform(1 / math.sqrt(hidden_dim * 2))self.fc = nn.Dense(hidden_dim * 2, output_dim, weight_init=weight_init, bias_init=bias_init)def construct(self, inputs):embedded = self.embedding(inputs)_, (hidden, _) = self.rnn(embedded)hidden = ops.concat((hidden[-2, :, :], hidden[-1, :, :]), axis=1)output = self.fc(hidden)return output
编写预测接口:test_interface
def predict_sentiment(model, vocab, sentence):score_map = {1: "Positive",0: "Negative"}model.set_train(False)tokenized = sentence.lower().split()indexed = vocab.tokens_to_ids(tokenized)tensor = ms.Tensor(indexed, ms.int32)tensor = tensor.expand_dims(0)prediction = model(tensor)return score_map[int(np.round(ops.sigmoid(prediction).asnumpy()))]def test_interface():# train()score_map = {1: "Positive",0: "Negative"}ckpt_file_name = './IMDB/IMDB/sentiment-analysis.ckpt'# 预训练词向量表glove_path = r"./IMDB/IMDB/glove.6B.zip"vocab, embeddings = load_glove(glove_path) # 预定义词向量表hidden_size = 256output_size = 1num_layers = 2bidirectional = Truepad_idx = vocab.tokens_to_ids('<pad>')model = RNN(embeddings, hidden_size, output_size, num_layers, bidirectional, pad_idx)param_dict = ms.load_checkpoint(ckpt_file_name)ms.load_param_into_net(model, param_dict)# 预测while True:try:print("go on!")sentence = input("请输入:")res = predict_sentiment(model, vocab, sentence)print("用户输入的内容为:", sentence, "评价结果是:", res)except:breakdef load_glove(glove_path):glove_100d_path = os.path.join(cache_dir, 'glove.6B.100d.txt') # 保存数据词典if not os.path.exists(glove_100d_path):glove_zip = zipfile.ZipFile(glove_path)glove_zip.extractall(cache_dir)embeddings = []tokens = []with open(glove_100d_path, encoding='utf-8') as gf:for glove in gf:word, embedding = glove.split(maxsplit=1)tokens.append(word)embeddings.append(np.fromstring(embedding, dtype=np.float32, sep=' '))# 添加 <unk>, <pad> 两个特殊占位符对应的embeddingembeddings.append(np.random.rand(100))embeddings.append(np.zeros((100,), np.float32))vocab = ds.text.Vocab.from_list(tokens, special_tokens=["<unk>", "<pad>"], special_first=False)embeddings = np.array(embeddings).astype(np.float32)return vocab, embeddings
预测推理:
import mindspore as ms
import mindspore.nn as nn
import mindspore.ops as ops
import os
import zipfile
import numpy as nptest_interface()
预测结果。

相关文章:
Mindspore框架循环神经网络RNN模型实现情感分类|(六)模型加载和推理(情感分类模型资源下载)
Mindspore框架循环神经网络RNN模型实现情感分类 Mindspore框架循环神经网络RNN模型实现情感分类|(一)IMDB影评数据集准备 Mindspore框架循环神经网络RNN模型实现情感分类|(二)预训练词向量 Mindspore框架循环神经网络RNN模型实现…...
System类
System类常见方法 ① exit 退出当前程序 public static void main(String[] args) {System.out.println("ok1");//0表示状态,即正常退出System.exit(0);System.out.println("ok2");} ② arraycopy 复制数组元素 复制的数组元素个数必须<原数…...
【前端 02】新浪新闻项目-初步使用CSS来排版
在今天的博文中,我们将围绕“新浪新闻”项目,深入探讨HTML和CSS在网页制作中的基础应用。通过具体实例,我们将学习如何设置图片、标题、超链接以及文本排版,同时了解CSS的引入方式和选择器优先级,以及视频和音频标签的…...
HarmonyOS和OpenHarmony区别联系
前言 相信我们在刚开始接触鸿蒙开发的时候经常看到HarmonyOS和OpenHarmony频繁的出现在文章和文档之中,那么这两个名词分别是什么意思,他们之间又有什么联系呢?本文将通过现有的文章和网站内容并与Google的AOSP和Android做对比,带…...
llama模型,nano
目录 llama模型 Llama模型性能评测 nano模型是什么 Gemini Nano模型 参数量 MMLU、GPQA、HumanEval 1. MMLU(Massive Multi-task Language Understanding) 2. GPQA(Grade School Physics Question Answering) 3. HumanEval llama模型 Large Language Model AI Ll…...
ElasticSearch的应用场景和优势
ElasticSearch是一个开源的分布式搜索和分析引擎,它以其高性能、可扩展性和实时性在多个领域得到了广泛应用。以下是ElasticSearch的主要应用场景和优势: 应用场景 实时搜索: ElasticSearch以其快速、可扩展和实时的特性,成为实…...
git 、shell脚本
git 文件版本控制 安装git yum -y install git 创建仓库 将文件提交到暂存 git add . #将暂存区域的文件提交仓库 git commit -m "说明" #推送到远程仓库 git push #获取远程仓库的更新 git pull #克隆远程仓库 git clone #分支,提高代码的灵活性 #检查分…...
阿里云服务器 篇六:GitHub镜像网站
文章目录 系列文章搭建镜像网站的2种方式使用 Web 抓取工具 (Spider 技术)使用 Web 代理服务器使用 nginx 搭建GitHub镜像网站基础环境搭建添加对 github.com 的转发配置添加对 raw.githubusercontent.com 的转发配置配置更改注意事项(可选)缓存优化为新增设的二级域名配置DN…...
强化学习学习(三)收敛性证明与DDPG
文章目录 证明收敛? Deep RL with Q-FunctionsDouble Q-Learning理论上的解法实际上的解法 DDPG: Q-Learning with continuous actionsAdvanced tips for Q-Learning 证明收敛? 对于Value迭代:不动点证明的思路 首先定义一个算子 B : B V ma…...
培养前端工程化思维,不要让一行代码毁了整个程序
看《阿丽亚娜 5 号(Ariane 5)火箭爆炸》有感。 1、动手写项目之前,先进行全局性代码逻辑思考,将该做的事情,一些细节,统一建立标准,避免为以后埋雷。 2、避免使用不必要或无意义的代码、注释。…...
电子文件怎么盖章?
电子文件怎么盖章?电子文件盖章是数字化办公中常见的操作,包括盖电子公章和电子骑缝章。以下是针对这两种情况的详细步骤: 一、盖电子公章 方法一:使用专业软件 选择软件:选择一款专业的电子签名或PDF编辑软件&…...
IDEA在编译的时候报Error: java: 找不到符号符号: 变量 log lombok失效问题
错误描述 idea因为lombok的报错: java: You arent using a compiler supported by lombok, so lombok will not work and has been disabled.Your processor is: com.sun.proxy.$Proxy8Lombok supports: sun/apple javac 1.6, ECJ 原因:这是由于Lombok的版本过低的…...
【Python】如何修改元组的值?
一、题目 We have seen that lists are mutable (they can be changed), and tuples are immutable (they cannot be changed). Lets try to understand this with an example. You are given an immutable string, and you want to make chaneges to it. Example >>…...
【安卓】Android Studio简易计算器(实现加减乘除,整数小数运算,正数负数运算)
目录 前言 运算效果 一、创建一个新的项目 二、编写xml文件(计算器显示页面) 三、实现Java运算逻辑 编辑 完整代码 xml文件代码: Java文件代码: 注: 前言 随着移动互联网的普及,手机应用程序已…...
一个vue mixin 小案例,实现等比例缩放
mixin.js /** Author: jinjianwei* Date: 2024-07-24 16:17:16* Description: 等比例缩放,屏幕适配 mixin 函数*/// * 默认缩放值 const scale {width: 1,height: 1, } // * 设计稿尺寸(px) const baseWidth 1920 const baseHeight 1080 …...
【数据结构初阶】单链表经典算法题十二道——得道飞升(中篇)
hi,bro—— 目录 5、 链表分割 6、 链表的回文结构 7、 相交链表 8、 环形链表 【思考】 —————————————— DEAD POOL —————————————— 5、 链表分割 /* struct ListNode {int val;struct ListNode *next;ListNode(int x) : val(x), …...
CTF ssrf 基础入门 (一)
0x01 引言 我发现我其实并不是很明白这个东西,有些微妙,而且记忆中也就记得Gopherus这个工具了,所以重新学习了一下,顺便记录一下吧 0x02 辨别 我们拿到一个题目,他的名字可能就是题目类型,但是也有可能…...
IP地址在后端怎么存才好?
目录 一、地址的区别 二、字符串存取 2.1 IPV4空间大小 2.2 IPV6空间大小 三、整数存取 四、总结 4.1 字符串存取优缺点 4.2 整数存取的优缺点 一、地址的区别 在网络中,IP地址分为IPV4和IPV6,IPV4是一共占32位的,每8位小数点分隔&…...
《通讯世界》是什么级别的期刊?是正规期刊吗?能评职称吗?
问题解答 问:《通讯世界》是不是核心期刊? 答:不是,是知网收录的第一批认定学术期刊。 问:《通讯世界》级别? 答:国家级。主管单位:科学技术部 主办单位:中国科学技…...
go get的原理
1、GOPROXY 可以写在os的环境变量中,也可以写在go的环境变量中 GOPROXYhttps://goproxy.cn,direct 表示先去第一个网址下载,下载不到,就直接下载 也可以配置GOPRIVATE私有仓库,遇到私有仓库中的包,就直接下载 2、go…...
web vue 项目 Docker化部署
Web 项目 Docker 化部署详细教程 目录 Web 项目 Docker 化部署概述Dockerfile 详解 构建阶段生产阶段 构建和运行 Docker 镜像 1. Web 项目 Docker 化部署概述 Docker 化部署的主要步骤分为以下几个阶段: 构建阶段(Build Stage):…...
DeepSeek 赋能智慧能源:微电网优化调度的智能革新路径
目录 一、智慧能源微电网优化调度概述1.1 智慧能源微电网概念1.2 优化调度的重要性1.3 目前面临的挑战 二、DeepSeek 技术探秘2.1 DeepSeek 技术原理2.2 DeepSeek 独特优势2.3 DeepSeek 在 AI 领域地位 三、DeepSeek 在微电网优化调度中的应用剖析3.1 数据处理与分析3.2 预测与…...
《Playwright:微软的自动化测试工具详解》
Playwright 简介:声明内容来自网络,将内容拼接整理出来的文档 Playwright 是微软开发的自动化测试工具,支持 Chrome、Firefox、Safari 等主流浏览器,提供多语言 API(Python、JavaScript、Java、.NET)。它的特点包括&a…...
【网络安全产品大调研系列】2. 体验漏洞扫描
前言 2023 年漏洞扫描服务市场规模预计为 3.06(十亿美元)。漏洞扫描服务市场行业预计将从 2024 年的 3.48(十亿美元)增长到 2032 年的 9.54(十亿美元)。预测期内漏洞扫描服务市场 CAGR(增长率&…...
NLP学习路线图(二十三):长短期记忆网络(LSTM)
在自然语言处理(NLP)领域,我们时刻面临着处理序列数据的核心挑战。无论是理解句子的结构、分析文本的情感,还是实现语言的翻译,都需要模型能够捕捉词语之间依时序产生的复杂依赖关系。传统的神经网络结构在处理这种序列依赖时显得力不从心,而循环神经网络(RNN) 曾被视为…...
实现弹窗随键盘上移居中
实现弹窗随键盘上移的核心思路 在Android中,可以通过监听键盘的显示和隐藏事件,动态调整弹窗的位置。关键点在于获取键盘高度,并计算剩余屏幕空间以重新定位弹窗。 // 在Activity或Fragment中设置键盘监听 val rootView findViewById<V…...
html-<abbr> 缩写或首字母缩略词
定义与作用 <abbr> 标签用于表示缩写或首字母缩略词,它可以帮助用户更好地理解缩写的含义,尤其是对于那些不熟悉该缩写的用户。 title 属性的内容提供了缩写的详细说明。当用户将鼠标悬停在缩写上时,会显示一个提示框。 示例&#x…...
深度学习习题2
1.如果增加神经网络的宽度,精确度会增加到一个特定阈值后,便开始降低。造成这一现象的可能原因是什么? A、即使增加卷积核的数量,只有少部分的核会被用作预测 B、当卷积核数量增加时,神经网络的预测能力会降低 C、当卷…...
JS手写代码篇----使用Promise封装AJAX请求
15、使用Promise封装AJAX请求 promise就有reject和resolve了,就不必写成功和失败的回调函数了 const BASEURL ./手写ajax/test.jsonfunction promiseAjax() {return new Promise((resolve, reject) > {const xhr new XMLHttpRequest();xhr.open("get&quo…...
快速排序算法改进:随机快排-荷兰国旗划分详解
随机快速排序-荷兰国旗划分算法详解 一、基础知识回顾1.1 快速排序简介1.2 荷兰国旗问题 二、随机快排 - 荷兰国旗划分原理2.1 随机化枢轴选择2.2 荷兰国旗划分过程2.3 结合随机快排与荷兰国旗划分 三、代码实现3.1 Python实现3.2 Java实现3.3 C实现 四、性能分析4.1 时间复杂度…...
