当前位置: 首页 > news >正文

【python】sklearn基础教程及示例

【python】sklearn基础教程及示例


Scikit-learn(简称sklearn)是一个非常流行的Python机器学习库,提供了许多常用的机器学习算法和工具。以下是一个基础教程的概述:


 1. 安装scikit-learn


首先,确保你已经安装了Python和pip,然后使用以下命令安装scikit-learn:

pip install -U scikit-learn

2. 导入库

在你的Python脚本或Jupyter Notebook中,首先导入scikit-learn库:

import sklearn

3. 加载数据

你可以加载各种数据集,包括样本数据集和真实世界数据集。例如,加载经典的鸢尾花数据集:

from sklearn.datasets import load_iris
iris = load_iris()
X = iris.data  # 特征矩阵
y = iris.target  # 目标向量

4. 数据预处理

在应用机器学习算法之前,通常需要进行一些数据预处理,例如特征缩放、特征选择、数据清洗等。以下是一些常用的数据预处理方法:

from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)

5. 数据拆分

将数据集拆分为训练集和测试集:

from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

6. 建立模型

使用各种机器学习算法来建立模型,例如逻辑回归:

from sklearn.linear_model import LogisticRegression
model = LogisticRegression()
model.fit(X_train, y_train)

7. 模型评估

在训练模型之后,评估模型的性能,例如使用准确度评估:

from sklearn.metrics import accuracy_score
y_pred = model.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
print(f"Accuracy: {accuracy}")

8. 交叉验证

使用交叉验证来评估模型的稳定性和泛化能力:

from sklearn.model_selection import cross_validate
result = cross_validate(model, X, y, cv=5)
print(result['test_score'])

sklearn示例

1.简单例子:鸢尾花分类

这是一个经典的机器学习任务,用于分类鸢尾花的种类。

load_iris 是一个经典的机器学习数据集,通常用于分类和聚类任务。这个数据集包含了三种不同种类的鸢尾花(Iris Setosa、Iris Versicolour 和 Iris Virginica)的信息,每种鸢尾花有四个特征:花萼长度、花萼宽度、花瓣长度和花瓣宽度。

具体来说,load_iris 数据集包含以下内容:

  • 150个样本:每种鸢尾花各50个样本。
  • 4个特征:花萼长度、花萼宽度、花瓣长度和花瓣宽度。
  • 目标标签:每个样本的目标类别标签,分别为0(Setosa)、1(Versicolour)和2(Virginica)。
  • StandardScaler 是 scikit-learn 库中的一个类,用于对数据进行标准化处理。标准化的目的是将数据的特征缩放到相同的尺度,通常是均值为0,标准差为1。这对于许多机器学习算法来说是非常重要的,特别是那些基于距离的算法(如K-近邻、支持向量机等)和需要计算协方差矩阵的算法(如PCA、线性回归等)。

# 导入必要的库
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score# 加载数据集
iris = load_iris()
X = iris.data
y = iris.target# 数据预处理
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)# 拆分数据集
X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.2, random_state=42)# 建立和训练模型
model = LogisticRegression()
model.fit(X_train, y_train)# 预测和评估
y_pred = model.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
print(f"Accuracy: {accuracy}")

2.复杂例子:手写数字识别

这个例子使用手写数字数据集,并应用支持向量机(SVM)进行分类。

load_digits 是 scikit-learn 提供的一个经典数据集,用于手写数字识别任务。这个数据集包含了 0 到 9 共 10 个数字的手写图像,每个图像是一个 8x8 的灰度图像。

  • 数据集内容 样本数量:1797 个手写数字图像。
  • 特征维度:每个图像有 64 个特征(8x8 像素)。
  • 特征值:每个特征值是一个整数,范围从 0 到 16,表示像素的灰度值。
  • 目标标签:每个样本对应一个目标标签,表示数字 0 到 9。

# 导入必要的库
from sklearn.datasets import load_digits
from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.preprocessing import StandardScaler
from sklearn.svm import SVC
from sklearn.metrics import classification_report# 加载数据集
digits = load_digits()
X = digits.data
y = digits.target# 数据预处理
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)# 拆分数据集
X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.2, random_state=42)# 使用网格搜索进行超参数调优
param_grid = {'C': [0.1, 1, 10, 100], 'gamma': [1, 0.1, 0.01, 0.001]}
grid = GridSearchCV(SVC(), param_grid, refit=True, verbose=2)
grid.fit(X_train, y_train)# 最佳参数和模型评估
print(f"Best Parameters: {grid.best_params_}")
y_pred = grid.predict(X_test)
print(classification_report(y_test, y_pred))

在这个复杂的例子中,我们使用了网格搜索(GridSearchCV)来找到支持向量机(SVM)的最佳超参数,并使用分类报告(classification_report)来评估模型的性能。

  • param_grid:这是一个字典,定义了要搜索的参数范围。在这个例子中,我们要调整两个参数:
    • C:正则化参数,控制模型的复杂度。较小的 C 值会使模型更简单,但可能欠拟合;较大的 C 值会使模型更复杂,但可能过拟合。
    • gamma:核函数系数,控制单个训练样本的影响范围。较大的 gamma 值会使模型更复杂,但可能过拟合;较小的 gamma 值会使模型更简单,但可能欠拟合。
  • GridSearchCV:这是 scikit-learn 提供的一个工具,用于通过交叉验证来搜索最佳参数组合。
    • SVC():支持向量机分类器。
    • param_grid:要搜索的参数网格。
    • refit=True:在找到最佳参数组合后,使用整个训练集重新训练模型。
    • verbose=2:设置详细程度,输出更多的搜索过程信息。

相关文章:

【python】sklearn基础教程及示例

【python】sklearn基础教程及示例 Scikit-learn(简称sklearn)是一个非常流行的Python机器学习库,提供了许多常用的机器学习算法和工具。以下是一个基础教程的概述: 1. 安装scikit-learn 首先,确保你已经安装了Python和…...

Linux:传输层(2) -- TCP协议(2)

目录 1. 流量控制 2. 滑动窗口 3. 拥塞控制 4. 延迟应答 5. 捎带应答 6. 面向字节流 7. 粘包问题 8. TCP异常情况 1. 流量控制 接收端处理数据的速度是有限的. 如果发送端发的太快 , 导致接收端的缓冲区被打满 , 这个时候如果发送端继续发送 , 就会造成丢包, 继而引…...

AcWing 802. 区间和

var说明add存储了插入操作,在指定 x x x下标所在位置 a [ x ] c a[x]c a[x]cquery是求 [ L , R ] [L,R] [L,R]区间和用到的数组,最后才用到alls 是存储离散化之后的值 , 对于会访问到的每个下标,统统丢到 a l l s 里面 ,会把 x 和 [ L , R …...

实验2-2-1 温度转换

#include<stdio.h> #include <math.h> int main(){int c,f150;c5*(f-32)/9;printf("fahr 150, celsius %d",c); }...

Spark实时(六):Output Sinks案例演示

文章目录 Output Sinks案例演示 一、​​​​​​​File sink 二、​​​​​​​​​​​​​​Memory Sink 三、​​​​​​​​​​​​​​Foreach Sink 1、​​​​​​​foreachBatch 2、​​​​​​​​​​​​​​foreach Output Sinks案例演示 当我们对流式…...

在SQL编程中DROP、DELETE和TRUNCATE的区别

在SQL编程中&#xff0c;DROP、DELETE和TRUNCATE都是用于删除数据的命令&#xff0c;但它们之间有着显著的区别&#xff0c;主要体现在它们删除数据的范围、操作的不可逆性、对表结构的影响、性能以及事务日志的影响上。 DROP: 作用&#xff1a;DROP命令用于删除整个表及其所有…...

【AI大模型】Prompt 提示词工程使用详解

目录 一、前言 二、Prompt 提示词工程介绍 2.1 Prompt提示词工程是什么 2.1.1 Prompt 构成要素 2.2 Prompt 提示词工程有什么作用 2.2.1 Prompt 提示词工程使用场景 2.3 为什么要学习Prompt 提示词工程 三、Prompt 提示词工程元素构成与操作实践 3.1 前置准备 3.2 Pro…...

学习记录day18——数据结构 算法

算法的相关概念 程序 数据结构 算法 算法是程序设计的灵魂&#xff0c;结构式程序设计的肉体 算法&#xff1a;计算机解决问题的方法护额步骤 算法的特性 1、确定性&#xff1a;算法中每一条语句都有确定的含义&#xff0c;不能模棱两可 2、有穷性&#xff1a;程序执行一…...

一篇文章带你学完Java所有的时间与日期类

目录 一、传统时间与日期类 1.Date类 构造方法 获取日期和时间信息的方法 设置日期和时间信息的方法 2.Calendar类 主要特点和功能 常用方法 1. 获取当前日历对象 2. 获取日历中的某个信息 3. 获取日期对象 4. 获取时间毫秒值 5. 修改日历的某个信息 6. 为某个信息增…...

利用GPT4o Captcha工具和AI技术全面识别验证码

利用GPT4o Captcha工具和AI技术全面识别验证码 &#x1f9e0;&#x1f680; 摘要 GPT4o Captcha工具是一款命令行工具&#xff0c;通过Python和Selenium测试各种类型的验证码&#xff0c;包括拼图、文本、复杂文本和reCAPTCHA&#xff0c;并使用OpenAI GPT-4帮助解决验证码问…...

大学生算法高等数学学习平台设计方案 (第一版)

目录 目标用户群体的精准定位 初阶探索者 进阶学习者 资深研究者 功能需求的深度拓展 个性化学习路径定制 概念图谱构建 公式推导展示 交互式问题解决系统 新功能和创新点的引入 虚拟教室环境 数学建模工具集成 算法可视化平台 学术论文资源库 技术实现的前瞻性…...

机器学习算法与Python实战 | 两行代码即可应用 40 个机器学习模型--lazypredict 库!

本文来源公众号“机器学习算法与Python实战”&#xff0c;仅用于学术分享&#xff0c;侵权删&#xff0c;干货满满。 原文链接&#xff1a;两行代码即可应用 40 个机器学习模型 今天和大家一起学习使用 lazypredict 库&#xff0c;我们可以用一行代码在我们的数据集上实现许多…...

使用WebSocket协议调用群发方法将消息返回客户端页面

目录 一.C/S架构&#xff1a; 二.Http协议与WebSocket协议的区别&#xff1a; 1.Http协议与WebSocket协议的区别&#xff1a; 2.WebSocket协议的使用场景&#xff1a; 三.项目实际操作&#xff1a; 1.导入依赖&#xff1a; 2.通过WebSocket实现页面与服务端保持长连接&a…...

【北京迅为】《i.MX8MM嵌入式Linux开发指南》-第三篇 嵌入式Linux驱动开发篇-第五十七章 Linux中断实验

i.MX8MM处理器采用了先进的14LPCFinFET工艺&#xff0c;提供更快的速度和更高的电源效率;四核Cortex-A53&#xff0c;单核Cortex-M4&#xff0c;多达五个内核 &#xff0c;主频高达1.8GHz&#xff0c;2G DDR4内存、8G EMMC存储。千兆工业级以太网、MIPI-DSI、USB HOST、WIFI/BT…...

每日一题~961div2A+B+C(阅读题,思维,数学log)

A 题意&#xff1a;给你 n*n 的表格和k 个筹码。每个格子上至多放一个 问至少占据多少对角线。 显然&#xff0c;要先 格数的多的格子去放。 n n-1 n-2 …1 只有n 的是一个&#xff08;主对角线&#xff09;&#xff0c;其他的是两个。 #include <bits/stdc.h> using na…...

Fireflyrk3288 ubuntu18.04添加Qt开发环境、安装mysql-server

1、创建一台同版本的ubuntu18.04的虚拟机 2、下载rk3288_ubuntu_18.04_armhf_ext4_v2.04_20201125-1538_DESKTOP.img 3、创建空img镜像容器 dd if/dev/zero ofubuntu_rootfs.img bs1M count102404、将该容器格式化成ext4文件系统 mkfs.ext4 ubuntu_rootfs.img5、将该镜像文件…...

简化mybatis @Select IN条件的编写

最近从JPA切换到Mybatis&#xff0c;使用无XML配置&#xff0c;Select注解直接写到interface上&#xff0c;发现IN条件的编写相当麻烦。 一般得写成这样&#xff1a; Select({"<script>","SELECT *", "FROM blog","WHERE id IN&quo…...

Windows图形界面(GUI)-MFC-C/C++ - Control

公开视频 -> 链接点击跳转公开课程博客首页 -> ​​​链接点击跳转博客主页 目录 Control 资源编辑器 添加控件 设置控件属性 添加控件变量 添加消息处理 处理控件事件 控件焦点顺序 Control 资源编辑器 资源编辑器&#xff1a;用于可视化地编辑对话框和控件。…...

SQL Server数据库安全:策略制定与实践指南

SQL Server数据库安全&#xff1a;策略制定与实践指南 在当今数字化时代&#xff0c;数据安全是每个组织的核心关注点。SQL Server作为广泛使用的关系型数据库管理系统&#xff0c;提供了一套强大的安全特性来保护存储的数据。制定有效的数据库安全策略是确保数据完整性、可用…...

Spring Boot入门指南:留言板

一.留言板 1.输⼊留⾔信息,点击提交.后端把数据存储起来. 2.⻚⾯展⽰输⼊的表⽩墙的信息 规范&#xff1a; 1.写一个类MessageInfo对象&#xff0c;添加构造方法 虽然有快捷键&#xff0c;但是还是不够偷懒 项目添加Lombok。 Lombok是⼀个Java⼯具库&#xff0c;通过添加注…...

RestClient

什么是RestClient RestClient 是 Elasticsearch 官方提供的 Java 低级 REST 客户端&#xff0c;它允许HTTP与Elasticsearch 集群通信&#xff0c;而无需处理 JSON 序列化/反序列化等底层细节。它是 Elasticsearch Java API 客户端的基础。 RestClient 主要特点 轻量级&#xff…...

前端倒计时误差!

提示:记录工作中遇到的需求及解决办法 文章目录 前言一、误差从何而来?二、五大解决方案1. 动态校准法(基础版)2. Web Worker 计时3. 服务器时间同步4. Performance API 高精度计时5. 页面可见性API优化三、生产环境最佳实践四、终极解决方案架构前言 前几天听说公司某个项…...

376. Wiggle Subsequence

376. Wiggle Subsequence 代码 class Solution { public:int wiggleMaxLength(vector<int>& nums) {int n nums.size();int res 1;int prediff 0;int curdiff 0;for(int i 0;i < n-1;i){curdiff nums[i1] - nums[i];if( (prediff > 0 && curdif…...

Axios请求超时重发机制

Axios 超时重新请求实现方案 在 Axios 中实现超时重新请求可以通过以下几种方式&#xff1a; 1. 使用拦截器实现自动重试 import axios from axios;// 创建axios实例 const instance axios.create();// 设置超时时间 instance.defaults.timeout 5000;// 最大重试次数 cons…...

Rapidio门铃消息FIFO溢出机制

关于RapidIO门铃消息FIFO的溢出机制及其与中断抖动的关系&#xff0c;以下是深入解析&#xff1a; 门铃FIFO溢出的本质 在RapidIO系统中&#xff0c;门铃消息FIFO是硬件控制器内部的缓冲区&#xff0c;用于临时存储接收到的门铃消息&#xff08;Doorbell Message&#xff09;。…...

QT3D学习笔记——圆台、圆锥

类名作用Qt3DWindow3D渲染窗口容器QEntity场景中的实体&#xff08;对象或容器&#xff09;QCamera控制观察视角QPointLight点光源QConeMesh圆锥几何网格QTransform控制实体的位置/旋转/缩放QPhongMaterialPhong光照材质&#xff08;定义颜色、反光等&#xff09;QFirstPersonC…...

免费数学几何作图web平台

光锐软件免费数学工具&#xff0c;maths,数学制图&#xff0c;数学作图&#xff0c;几何作图&#xff0c;几何&#xff0c;AR开发,AR教育,增强现实,软件公司,XR,MR,VR,虚拟仿真,虚拟现实,混合现实,教育科技产品,职业模拟培训,高保真VR场景,结构互动课件,元宇宙http://xaglare.c…...

WebRTC从入门到实践 - 零基础教程

WebRTC从入门到实践 - 零基础教程 目录 WebRTC简介 基础概念 工作原理 开发环境搭建 基础实践 三个实战案例 常见问题解答 1. WebRTC简介 1.1 什么是WebRTC&#xff1f; WebRTC&#xff08;Web Real-Time Communication&#xff09;是一个支持网页浏览器进行实时语音…...

深入理解Optional:处理空指针异常

1. 使用Optional处理可能为空的集合 在Java开发中&#xff0c;集合判空是一个常见但容易出错的场景。传统方式虽然可行&#xff0c;但存在一些潜在问题&#xff1a; // 传统判空方式 if (!CollectionUtils.isEmpty(userInfoList)) {for (UserInfo userInfo : userInfoList) {…...

从面试角度回答Android中ContentProvider启动原理

Android中ContentProvider原理的面试角度解析&#xff0c;分为​​已启动​​和​​未启动​​两种场景&#xff1a; 一、ContentProvider已启动的情况 1. ​​核心流程​​ ​​触发条件​​&#xff1a;当其他组件&#xff08;如Activity、Service&#xff09;通过ContentR…...