TSPNet代码分析
论文《Realigning Confidence with Temporal Saliency Information for Point-Level Weakly-Supervised Temporal Action Localization》的official code分析
论文解读
代码分析
先看看训练过程,执行main
if __name__ == '__main__':exp = Exp()if exp.config.mode == 'eval':exp.test()else:exp.train()
先实例化EXP
class Exp(object):def __init__(self, exp_type='THUMOS14'):self.config = self._get_config(exp_type)if self.config.seed != -1:self._setup_seed()self.device = self._get_device()def train(self):train_dataset, train_loader = self._get_data(subset='train')test_dataset, test_loader = self._get_data(subset='test')model = self._get_model().to(self.device)criterion = self._get_criterion()optimizer = self._get_optimizer(model)loader = iter(train_loader)for itr in tqdm(range(1, self.config.num_itr + 1), total=self.config.num_itr):if (itr - 1) % (len(train_loader) // self.config.batch_size) == 0:loader = iter(train_loader)train_one_proposal_batch(model, self.device, loader, criterion, optimizer, self.config.batch_size)if itr % self.config.update_fre == 0:update_label(dataset=train_dataset, dataloader=train_loader, model=model, device=self.device, up_threshold=self.config.up_threshold)if itr % 100 == 0:test_proposal(self.config, model, self.device, test_loader, itr)
可以看到获取参数,然后根据mode执行train
首先执行self._get_data,即实例化dataset
def _get_data(self, subset):dataset = PTAL_Dataset(data_path=self.config.data_path,subset=subset,modality=self.config.modality,num_classes=self.config.num_classes,feature_fps=self.config.feature_fps,soft_value=self.config.soft_value)
class PTAL_Dataset(Dataset):def __init__(self,data_path: str,subset: str = 'test',modality: str = 'both',num_classes: int = 20,feature_fps: int = 25,soft_value: float = 0.4):self.data_path = data_pathself.subset = subsetself.modality = modalityself.feature_fps = feature_fpsself.dataset = self.data_path.split('/')[-1]self.cls_dict = json.load(open('./data/dataset_cls_dict.json', 'rb'))[self.dataset]self.num_classes = num_classesself.soft_value = soft_value# Load label filesself.gt = json.load(open(os.path.join(self.data_path, 'gt.json'), 'rb'))self.p_label = pd.read_csv(os.path.join(self.data_path, 'train_df_ts_in_gt.csv')).groupby('video_id')self.fps_dict = json.load(open(os.path.join(self.data_path, 'fps.json'), 'rb'))self.delta_dict = {}# Get video namesself.vid_names = self._get_vidname()# Get proposalsself.proposals, \self.proposals_point, \self.proposals_center_label, \self.proposals_multi_flag, \self.proposals_point_id = self._get_proposals()
主要看看_get_proposals()函数,这个函数用于初始化和更新proposals
def _get_proposals(self, delta_point_dict=None):"""get proposals and generate the center labels from the original points or the updated saliency points"""history_points = []proposals_file = json.load(open(f'{self.data_path}/LAC_proposal_{self.dataset}_{self.subset}.json'))['results']proposals = {}proposals_point = {}proposals_center_label = {}proposals_multi_flag = {}proposals_point_id = {}proposals_mask = {}t_factor = self.feature_fps / 16.0act, bg, multi = 0, 0, 0for idx, name in enumerate(self.vi相关文章:
TSPNet代码分析
论文《Realigning Confidence with Temporal Saliency Information for Point-Level Weakly-Supervised Temporal Action Localization》的official code分析 论文解读 代码分析 先看看训练过程,执行main if __name__ == __main__:exp = Exp()if exp.config.mode == eval:…...
Ubuntu上安装anaconda创建虚拟环境(各种踩坑版)
之前都是在Windows桌面版进行深度学习的环境部署及训练,今天尝试了一下在Ubuntu上进行环境部署,踩了不少坑,提供一些解决办法给大家避雷。 目录 一、下载和安装anaconda 1. 下载 2. 安装 二、创建虚拟环境 一、下载和安装anaconda 1. …...
DC-5靶机通关
今天我们来学习DC-5靶机!!! 1.实验环境 攻击机:kali2023.2 靶机:DC-5 2.1扫描网段 2.2扫描端口 这里后面这俩端口有点似曾相识啊,在dc3里面好像见过,那咱们给这两个端口来个更详细的扫描&…...
AI学习记录 -使用react开发一个网页,对接chatgpt接口,附带一些英语的学习prompt
实现了如下功能(使用react实现,原创) 实现功能: 1、对接gpt35模型问答,并实现了流式传输(在java端) 2、在实际使用中,我们的问答历史会经常分享给他人,所以下图的 copy …...
MongoDB多数据源配置与切换
在MongoDB中配置和使用多数据源主要涉及以下几个步骤: 定义多个数据源的配置: 在应用程序的配置文件中,定义多个MongoDB的数据源,例如在Spring Boot中可以通过application.yml或application.properties文件进行配置。 创建多个Mo…...
Mongodb入门介绍
文章目录 1、Mongodb:NoSQL数据库,分布式的文档型数据库2、适合场景:3、不适合场景:4、概念5、总结 1、Mongodb:NoSQL数据库,分布式的文档型数据库 2、适合场景: 1、web网站数据存储ÿ…...
docker前端部署
挂载,把自己的目录位置,挂载到容器内的HTML...
指标体系建设的方法论
一、分析痛点 了解当前数仓侧与业务应用方对指标到不到、难使用的痛点及日常指标使用习惯,制定指标中心所需功能并设计指标中心样式。 二、指定指标规范 定义指标类型、指标使用方、确定指标域(这里是数据域)、指标要具备的属性(业务/技术口径、负责人、类型等)。 …...
乐鑫ESP32-H2设备联网芯片,集成多种安全功能方案,启明云端乐鑫代理商
在数字化浪潮的推动下,物联网正以前所未有的速度融入我们的日常生活。然而,随着设备的激增,安全问题也日益成为公众关注的焦点。 乐鑫ESP32-H2致力于为所有开发者提供高性价比的安全解决方案,这款芯片经过专门设计以集成多种安全…...
C++调用Java接口
一、配置Java环境 安装jdk,我这里使用jdk1.8 32位版本,下载地址:https://www.oracle.com/java/technologies/downloads/#java8-windows 下载安装后,设置环境变量: JAVA_HOME C:\Program Files (x86)\Java\jdk-1.…...
C# datetimePicker
1. 直接把控件拉到设计器中,此时不要调整控件的values属性,这样就可以 打开后每次默认显示当天日期。 2. 属性Format long长日期格式默认值short短日期格式Time时间格式custom自定义时间格式在customFormat这个属性设置,比如yyyy-MM-dd HH…...
AI有关的学习和python
一、基本概念 AIGC(AI Generated content AI 生成内容) AI生成的文本、代码、图片、音频、视频。都可以成为AIGC。 Generative AI(生成式AI)所生成的内容就是AIGC AI指代计算机人工智能,模仿人类的智能从而解决问题…...
前端node.js入门
(创作不易,感谢有你,你的支持,就是我前行的最大动力,如果看完对你有帮助,请留下您的足迹) 目录 Node.js 入门概览 什么是Node.js? 为什么选择Node.js? 基础安装与环境配置 安装…...
无需标注的数据集
0:人 1:自行车 2:汽车 3:摩托车 4:飞机 5:公交车 6:火车 7:卡车 8:船 9:交通信号灯 10:消火栓 11:停车标志 12:停车计时器…...
C# 抽象工厂模式
栏目总目录 概念 抽象工厂模式是一种创建型设计模式,它提供了一种创建一系列相关或相互依赖对象的接口,而无需指定它们具体的类。在抽象工厂模式中,一个抽象的工厂类负责定义创建产品对象的接口,但是具体工厂类将负责创建具体的产…...
java中 两个不同类对象list,属性一样,如何copy
如果您有两个不同的类,但它们拥有相同的属性,并且您想要从一个类的列表复制到另一个类的列表,您可以使用以下方法: 使用循环: 您可以遍历原始列表,并为每个元素创建目标类的新实例。 使用 Stream API&…...
文件上传总结
一、原理 通过界面上的上传功能上传了一个可执行的脚本文件,而WEB端的系统并未对其进行检测或者检测的逻辑做的不够好,使得恶意用户可以通过文件中上传的一句话木马获得操控权 二、绕过方法 1>前端绕过 1.删除前端校验函数 checkFile() 2.禁用js…...
网页突然被恶意跳转或无法打开?DNS污染怎么解决?
前言 在网上冲浪时,我们时常会遭遇DNS污染这一区域性攻击,几乎无人能幸免。受影响时:尝试访问正规网站可能会被错误导向赌博、色情或其他恶意站点。 1.我们为什么需要DNS 当我们想要访问一个网站时,就像拨打朋友的电话号码一样…...
Matlab进阶绘图第65期—带分组折线段的柱状图
带分组折线段的柱状图是在原始柱状图的基础上,在每组柱状图位置处分别添加折线段,以进行对比或添加额外信息。 由于Matlab中未收录带分组折线段的柱状图的绘制函数,因此需要大家自行设法解决。 本文使用自制的BarwithGroupedLine小工具进行…...
EasyMedia转码rtsp视频流flv格式,hls格式,H5页面播放flv流视频
在本文中,我们将介绍如何使用 EasyMedia 将 RTSP 视频流转码为 FLV 和 HLS 格式,并在 H5 页面上播放 FLV 流视频。EasyMedia 是一个支持多种流媒体协议的开源项目,非常适合用于这种转码和流媒体传输的场景。 前提条件 已经安装并配置好 Eas…...
大型活动交通拥堵治理的视觉算法应用
大型活动下智慧交通的视觉分析应用 一、背景与挑战 大型活动(如演唱会、马拉松赛事、高考中考等)期间,城市交通面临瞬时人流车流激增、传统摄像头模糊、交通拥堵识别滞后等问题。以演唱会为例,暖城商圈曾因观众集中离场导致周边…...
uniapp微信小程序视频实时流+pc端预览方案
方案类型技术实现是否免费优点缺点适用场景延迟范围开发复杂度WebSocket图片帧定时拍照Base64传输✅ 完全免费无需服务器 纯前端实现高延迟高流量 帧率极低个人demo测试 超低频监控500ms-2s⭐⭐RTMP推流TRTC/即构SDK推流❌ 付费方案 (部分有免费额度&#x…...
全志A40i android7.1 调试信息打印串口由uart0改为uart3
一,概述 1. 目的 将调试信息打印串口由uart0改为uart3。 2. 版本信息 Uboot版本:2014.07; Kernel版本:Linux-3.10; 二,Uboot 1. sys_config.fex改动 使能uart3(TX:PH00 RX:PH01),并让boo…...
让回归模型不再被异常值“带跑偏“,MSE和Cauchy损失函数在噪声数据环境下的实战对比
在机器学习的回归分析中,损失函数的选择对模型性能具有决定性影响。均方误差(MSE)作为经典的损失函数,在处理干净数据时表现优异,但在面对包含异常值的噪声数据时,其对大误差的二次惩罚机制往往导致模型参数…...
【JVM面试篇】高频八股汇总——类加载和类加载器
目录 1. 讲一下类加载过程? 2. Java创建对象的过程? 3. 对象的生命周期? 4. 类加载器有哪些? 5. 双亲委派模型的作用(好处)? 6. 讲一下类的加载和双亲委派原则? 7. 双亲委派模…...
Leetcode33( 搜索旋转排序数组)
题目表述 整数数组 nums 按升序排列,数组中的值 互不相同 。 在传递给函数之前,nums 在预先未知的某个下标 k(0 < k < nums.length)上进行了 旋转,使数组变为 [nums[k], nums[k1], …, nums[n-1], nums[0], nu…...
消息队列系统设计与实践全解析
文章目录 🚀 消息队列系统设计与实践全解析🔍 一、消息队列选型1.1 业务场景匹配矩阵1.2 吞吐量/延迟/可靠性权衡💡 权衡决策框架 1.3 运维复杂度评估🔧 运维成本降低策略 🏗️ 二、典型架构设计2.1 分布式事务最终一致…...
区块链技术概述
区块链技术是一种去中心化、分布式账本技术,通过密码学、共识机制和智能合约等核心组件,实现数据不可篡改、透明可追溯的系统。 一、核心技术 1. 去中心化 特点:数据存储在网络中的多个节点(计算机),而非…...
Qwen系列之Qwen3解读:最强开源模型的细节拆解
文章目录 1.1分钟快览2.模型架构2.1.Dense模型2.2.MoE模型 3.预训练阶段3.1.数据3.2.训练3.3.评估 4.后训练阶段S1: 长链思维冷启动S2: 推理强化学习S3: 思考模式融合S4: 通用强化学习 5.全家桶中的小模型训练评估评估数据集评估细节评估效果弱智评估和民间Arena 分析展望 如果…...
Selenium 查找页面元素的方式
Selenium 查找页面元素的方式 Selenium 提供了多种方法来查找网页中的元素,以下是主要的定位方式: 基本定位方式 通过ID定位 driver.find_element(By.ID, "element_id")通过Name定位 driver.find_element(By.NAME, "element_name"…...
