当前位置: 首页 > news >正文

昇思25天学习打卡营第22天|Pix2Pix实现图像转换

在这里插入图片描述

Pix2Pix图像转换学习总结

概述

Pix2Pix是一种基于条件生成对抗网络(cGAN)的深度学习模型,旨在实现不同图像风格之间的转换,如从语义标签到真实图像、灰度图到彩色图、航拍图到地图等。这一模型由Phillip Isola等人在2017年提出,广泛应用于图像到图像的翻译任务,具有生成器和判别器两个主要组成部分。

基本原理

cGAN的核心在于生成器和判别器的相互作用:

  • 生成器:根据输入图像生成“假”图像,试图使其看起来像真实图像。生成器通过不断迭代学习,从输入图像中提取特征并生成相应的输出。
  • 判别器:负责判断图像的真实性,评估生成的图像与真实图像之间的差异。判别器的目标是正确区分真实图像和生成图像。

二者通过博弈过程优化,生成器希望最大化判别器判断错误的概率,而判别器则尽力提高正确判断的概率。最终,模型通过这种竞争关系达到平衡,使生成图像的质量逐步提高。

数学目标

cGAN的目标可以用损失函数表示:
L c G A N ( G , D ) = E ( x , y ) [ l o g ( D ( x , y ) ) ] + E ( x , z ) [ l o g ( 1 − D ( x , G ( x , z ) ) ) ] L_{cGAN}(G,D) = E_{(x,y)}[log(D(x,y))] + E_{(x,z)}[log(1-D(x,G(x,z)))] LcGAN(G,D)=E(x,y)[log(D(x,y))]+E(x,z)[log(1D(x,G(x,z)))]

  • 其中, G G G为生成器, D D D为判别器, x x x为输入图像, y y y为真实图像, z z z为随机噪声。

该公式的简化形式为:
arg min ⁡ G max ⁡ D L c G A N ( G , D ) \text{arg}\min_{G}\max_{D}L_{cGAN}(G,D) argGminDmaxLcGAN(G,D)
这表明生成器和判别器的目标是相互对立的。

环境准备

在进行Pix2Pix学习之前,需要准备合适的计算环境。该项目支持在GPU、CPU和Ascend平台上运行。使用的训练数据集为经过处理的外墙(facades)数据,能够直接通过MindSpore框架读取。

数据准备

  1. 配置环境:确保安装必要的依赖库和MindSpore框架。
  2. 数据集下载:从指定链接下载所需的数据集,数据集已进行预处理,适合直接用于训练。

网络构建

网络构建主要包括生成器和判别器的设计。

生成器

生成器采用U-Net结构,特点如下:

  • 结构特点:U-Net由压缩路径和扩张路径组成,压缩路径通过卷积和下采样操作提取特征,扩张路径则通过上采样恢复图像的空间分辨率。
  • Skip Connections:通过连接压缩路径和扩张路径的特征图,U-Net能够保留不同分辨率下的细节信息,改善生成图像的质量。

判别器

判别器使用PatchGAN结构,工作原理为:

  • 局部判断:将输入图像划分为多个小块(patch),并使用卷积操作评估每个小块的真实性。
  • 输出:生成的矩阵中每个值代表对应小块的真实性概率,这种方式提高了判别的精度。

网络初始化

在模型构建完成后,需要对生成器和判别器进行初始化,以确保模型的有效学习:

  • 使用不同的初始化方法(如正态分布、Xavier等)为卷积层的权重赋值。
  • 为批归一化层的参数设置初始值。

训练过程

训练分为两个主要部分:

  1. 训练判别器:目标是提高其对真实和生成图像的辨别能力。通过最大化真实图像的概率和最小化生成图像的概率来优化。
  2. 训练生成器:目标是生成更高质量的图像,通过最小化判别器的判断损失来实现。

训练步骤

  • 每个训练周期记录判别器和生成器的损失值,以监控模型的学习进程。
  • 在每个epoch结束后,可视化训练结果,分析生成图像的质量。

推理

训练完成后,使用保存的模型权重进行推理:

  • 加载模型:通过load_checkpointload_param_into_net将训练得到的权重导入模型。
  • 执行推理:对新数据进行推理,展示生成效果。可以根据需求调整训练的epoch数量,以达到更好的生成效果。

通过这些步骤,Pix2Pix模型能够有效地实现不同图像风格之间的转换,广泛应用于图像处理和计算机视觉领域。

相关文章:

昇思25天学习打卡营第22天|Pix2Pix实现图像转换

Pix2Pix图像转换学习总结 概述 Pix2Pix是一种基于条件生成对抗网络(cGAN)的深度学习模型,旨在实现不同图像风格之间的转换,如从语义标签到真实图像、灰度图到彩色图、航拍图到地图等。这一模型由Phillip Isola等人在2017年提出&…...

全感知、全覆盖、全智能的智慧快消开源了。

智慧快消视频监控平台是一款功能强大且简单易用的实时算法视频监控系统。它的愿景是最底层打通各大芯片厂商相互间的壁垒,省去繁琐重复的适配流程,实现芯片、算法、应用的全流程组合,从而大大减少企业级应用约95%的开发成本。AI安全管理平台&…...

ABC364:D - K-th Nearest(二分)

题目 在一条数线上有 NQNQ 个点 A1,…,AN,B1,…,BQA1​,…,AN​,B1​,…,BQ​ ,其中点 AiAi​ 的坐标为 aiai​ ,点 BjBj​ 的坐标为 bjbj​ 。 就每个点 j1,2,…,Qj1,2,…,Q 回答下面的问题: 设 XX 是 A1,A2,…,ANA1​,A2​,…,AN​ 中最…...

hive中分区与分桶的区别

过去,在学习hive的过程中学习过分桶与分区。但是,却未曾将分区与分桶做详细比较。今天,回顾skew join时涉及到了分桶这一概念,一时间无法区分出分区与分桶的区别。查阅资料,特地记录下来。 一、Hive分区 1.分区一般是…...

Blender材质-PBR与纹理材质

1.PBR PBR:Physically Based Rendering 基于物理的渲染 BRDF:Bidirection Reflectance Distribution Function 双向散射分散函数 材质着色操作如下图: 2.纹理材质 左上角:编辑器类型中选择,着色器编辑器 新建着色器 -> 新建纹理 -> 新…...

微软的Edge浏览器如何设置兼容模式

微软的Edge浏览器如何设置兼容模式? Microsoft Edge 在浏览部分网站的时候,会被标记为不兼容,会有此网站需要Internet Explorer的提示,虽然可以手动点击在 Microsoft Edge 中继续浏览,但是操作起来相对复杂&#xff0c…...

SpringBoot开启多端口探究(1)

文章目录 前情提要发散探索从management.port开始确定否需要开启额外端口额外端口是如何开启的ManagementContextFactory的故事从哪儿来创建过程 management 相关API如何被注册 小结 前情提要 最近遇到一个需求,在单个服务进程上开启多网络端口,将API的…...

优化算法:2.粒子群算法(PSO)及Python实现

一、定义 粒子群算法(Particle Swarm Optimization,PSO)是一种模拟鸟群觅食行为的优化算法。想象一群鸟在寻找食物,每只鸟都在尝试找到食物最多的位置。它们通过互相交流信息,逐渐向食物最多的地方聚集。PSO就是基于这…...

ThreadLocal面试三道题

针对ThreadLocal的面试题,我将按照由简单到困难的顺序给出三道题目,并附上参考答案的概要。 1. 简单题:请简述ThreadLocal是什么,以及它的主要作用。 参考答案: ThreadLocal是Java中的一个类,用于提供线…...

Git操作指令(已完结)

Git操作指令 一、安装git 1、设置配置信息: # global全局配置 git config --global user.name "Your username" git config --global user.email "Your email"# 显示颜色 git config --global color.ui true# 配置别名,各种指令都…...

大数据采集工具——Flume简介安装配置使用教程

Flume简介&安装配置&使用教程 1、Flume简介 一:概要 Flume 是一个可配置、可靠、高可用的大数据采集工具,主要用于将大量的数据从各种数据源(如日志文件、数据库、本地磁盘等)采集到数据存储系统(主要为Had…...

C语言 #具有展开功能的排雷游戏

文章目录 前言 一、整个排雷游戏的思维梳理 二、整体代码分布布局 三、游戏主体逻辑实现--test.c 四、整个游戏头文件的引用以及函数的声明-- game.h 五、游戏功能的具体实现 -- game.c 六、老六版本 总结 前言 路漫漫其修远兮,吾将上下而求索。 一、整个排…...

npm publish出错,‘proxy‘ config is set properly. See: ‘npm help config‘

问题:使用 npm publish发布项目依赖失败,报错 proxy config is set properly. See: npm help config 1、先查找一下自己的代理 npm config get proxy npm config get https-proxy npm config get registry2、然后将代理和缓存置空 方式一: …...

Springboot 多数据源事务

起因 在一个service方法上使用的事务,其中有方法是调用的多数据源orderDB 但是多数据源没有生效,而是使用的primaryDB 原因 spring 事务实现的方式 以 Transactional 注解为例 (也可以看 TransactionTemplate, 这个流程更简单一点)。 入口:ProxyTransa…...

Python每日学习

我是从c转来学习Python的&#xff0c;总感觉和c相比Python的实操简单&#xff0c;但是由于写c的代码多了&#xff0c;感觉Python的语法好奇怪 就比如说c的开头要有库&#xff08;就是类似于#include <bits/stdc.h>&#xff09;而且它每一项的代码结束之后要有一个表示结…...

数据库 执行sql添加删除字段

添加字段&#xff1a; ALTER TABLE 表明 ADD COLUMN 字段名 类型 DEFAULT NULL COMMENT 注释 AFTER 哪个字段后面; 效果&#xff1a; 删除字段&#xff1a; ALTER TABLE 表明 DROP COLUMN 字段;...

前端开发:HTML与CSS

文章目录 前言1.1、CS架构和BS架构1.2、网页构成 HTML1.web开发1.1、最简单的web应用程序1.2、HTTP协议1.2.1 、简介1.2.2、 http协议特性1.3.3、http请求协议与响应协议 2.HTML概述3.HTML标准结构4.标签的语法5.基本标签6.超链接标签6.1、超链接基本使用6.2、锚点 7.img标签8.…...

ctfshow解题方法

171 172 爆库名->爆表名->爆字段名->爆字段值 -1 union select 1,database() ,3 -- //返回数据库名 -1 union select 1,2,group_concat(table_name) from information_schema.tables where table_schema库名 -- //获取数据库里的表名 -1 union select 1,group_concat(…...

探索 Blockly:自定义积木实例

3.实例 3.1.基础块 无输入 , 无输出 3.1.1.json var textOneJson {"type": "sql_test_text_one","message0": " one ","colour": 30,"tooltip": 无输入 , 无输出 };javascriptGenerator.forBlock[sql_test_te…...

MongoDB教程(二十三):关于MongoDB自增机制

&#x1f49d;&#x1f49d;&#x1f49d;首先&#xff0c;欢迎各位来到我的博客&#xff0c;很高兴能够在这里和您见面&#xff01;希望您在这里不仅可以有所收获&#xff0c;同时也能感受到一份轻松欢乐的氛围&#xff0c;祝你生活愉快&#xff01; 文章目录 引言一、MongoD…...

XCTF-web-easyupload

试了试php&#xff0c;php7&#xff0c;pht&#xff0c;phtml等&#xff0c;都没有用 尝试.user.ini 抓包修改将.user.ini修改为jpg图片 在上传一个123.jpg 用蚁剑连接&#xff0c;得到flag...

K8S认证|CKS题库+答案| 11. AppArmor

目录 11. AppArmor 免费获取并激活 CKA_v1.31_模拟系统 题目 开始操作&#xff1a; 1&#xff09;、切换集群 2&#xff09;、切换节点 3&#xff09;、切换到 apparmor 的目录 4&#xff09;、执行 apparmor 策略模块 5&#xff09;、修改 pod 文件 6&#xff09;、…...

JVM垃圾回收机制全解析

Java虚拟机&#xff08;JVM&#xff09;中的垃圾收集器&#xff08;Garbage Collector&#xff0c;简称GC&#xff09;是用于自动管理内存的机制。它负责识别和清除不再被程序使用的对象&#xff0c;从而释放内存空间&#xff0c;避免内存泄漏和内存溢出等问题。垃圾收集器在Ja…...

相机Camera日志分析之三十一:高通Camx HAL十种流程基础分析关键字汇总(后续持续更新中)

【关注我,后续持续新增专题博文,谢谢!!!】 上一篇我们讲了:有对最普通的场景进行各个日志注释讲解,但相机场景太多,日志差异也巨大。后面将展示各种场景下的日志。 通过notepad++打开场景下的日志,通过下列分类关键字搜索,即可清晰的分析不同场景的相机运行流程差异…...

Web 架构之 CDN 加速原理与落地实践

文章目录 一、思维导图二、正文内容&#xff08;一&#xff09;CDN 基础概念1. 定义2. 组成部分 &#xff08;二&#xff09;CDN 加速原理1. 请求路由2. 内容缓存3. 内容更新 &#xff08;三&#xff09;CDN 落地实践1. 选择 CDN 服务商2. 配置 CDN3. 集成到 Web 架构 &#xf…...

安宝特方案丨船舶智造的“AR+AI+作业标准化管理解决方案”(装配)

船舶制造装配管理现状&#xff1a;装配工作依赖人工经验&#xff0c;装配工人凭借长期实践积累的操作技巧完成零部件组装。企业通常制定了装配作业指导书&#xff0c;但在实际执行中&#xff0c;工人对指导书的理解和遵循程度参差不齐。 船舶装配过程中的挑战与需求 挑战 (1…...

深度学习水论文:mamba+图像增强

&#x1f9c0;当前视觉领域对高效长序列建模需求激增&#xff0c;对Mamba图像增强这方向的研究自然也逐渐火热。原因在于其高效长程建模&#xff0c;以及动态计算优势&#xff0c;在图像质量提升和细节恢复方面有难以替代的作用。 &#x1f9c0;因此短时间内&#xff0c;就有不…...

【 java 虚拟机知识 第一篇 】

目录 1.内存模型 1.1.JVM内存模型的介绍 1.2.堆和栈的区别 1.3.栈的存储细节 1.4.堆的部分 1.5.程序计数器的作用 1.6.方法区的内容 1.7.字符串池 1.8.引用类型 1.9.内存泄漏与内存溢出 1.10.会出现内存溢出的结构 1.内存模型 1.1.JVM内存模型的介绍 内存模型主要分…...

FFmpeg avformat_open_input函数分析

函数内部的总体流程如下&#xff1a; avformat_open_input 精简后的代码如下&#xff1a; int avformat_open_input(AVFormatContext **ps, const char *filename,ff_const59 AVInputFormat *fmt, AVDictionary **options) {AVFormatContext *s *ps;int i, ret 0;AVDictio…...

Qt的学习(一)

1.什么是Qt Qt特指用来进行桌面应用开发&#xff08;电脑上写的程序&#xff09;涉及到的一套技术Qt无法开发网页前端&#xff0c;也不能开发移动应用。 客户端开发的重要任务&#xff1a;编写和用户交互的界面。一般来说和用户交互的界面&#xff0c;有两种典型风格&…...