当前位置: 首页 > news >正文

数据结构:二叉树(链式结构)

文章目录

  • 1. 二叉树的链式结构
  • 2. 二叉树的创建和实现相关功能
    • 2.1 创建二叉树
    • 2.2 二叉树的前,中,后序遍历
      • 2.2.1 前序遍历
      • 2.2.2 中序遍历
      • 2.2.3 后序遍历
    • 2.3 二叉树节点个数
    • 2.4 二叉树叶子结点个数
    • 2.5 二叉树第k层结点个数
    • 2.6 二叉树的深度/高度
    • 2.7 二叉树查找值为x的结点
    • 2.8 层序遍历
    • 2.9 判断二叉树是否为完全二叉树
    • 2.10 二叉树的销毁
  • 3. 源代码

1. 二叉树的链式结构

二叉树的链式存储结构是指,用链表来表示一棵二叉树,即用链来指示元素的逻辑关系。 通常的方法是链表中每个结点由三个域组成:数据域和左右指针域左右指针分别用来给出该结点左孩子和右孩子所在的链结点的存储地址 。链式结构又分为二叉链和三叉链,三叉链在结构上比二叉链多了一个指向父节点的指针域。

请添加图片描述
在这里先使用二叉链来实现二叉树

2. 二叉树的创建和实现相关功能

2.1 创建二叉树

用链表来实现二叉树,每个链表结点都由一个数据域和左右指针域组成

//定义二叉树的链式结构
//二叉树结点的结构
typedef int BTDataType;
typedef struct BinaryTreeNode {BTDataType data;//存储数据struct BinaryTreeNpde* left;//指向左孩子结点的指针struct BinaryTreeNode* right;//指向右孩子结点的指针
}BTNode;

接下来我们来实现创建节点的函数:

首先使用malloc函数创建一个节点大小的空间,如果创建失败就打印错误信息,创建成功则把数据存储在新节点的数据域中,再将新节点的左右孩子指针指向空,最后返回新节点即可

//创建二叉树新节点
BTNode* buyNode(BTDataType x)
{BTNode* newnode = (BTNode*)malloc(sizeof(BTNode));if (newnode == NULL){perror("malloc fail!");exit(1);}newnode->data = x;newnode->left = newnode->right = NULL;return newnode;
}

下面我们来创建一棵如图所示的二叉树
在这里插入图片描述

BTNode* CreateTree()
{BTNode* node1 = buyNode(1);BTNode* node2 = buyNode(2);BTNode* node3 = buyNode(3);BTNode* node4 = buyNode(4);BTNode* node5 = buyNode(5);BTNode* node6 = buyNode(6);node1->left = node2;node1->right = node3;node2->left = node4;node2->right = node5;node3->left = node6;return node1;
}

2.2 二叉树的前,中,后序遍历

下面来简单介绍一下前,中,后序遍历的规则
在这里插入图片描述
请添加图片描述
下面来根据上面所示的二叉树进行前,中,后序遍历

2.2.1 前序遍历

前序遍历就是先打印根节点的值,再遍历根节点的左子树,最后遍历根节点的右子树,也就是根左右

//前序遍历
void PreOrder(BTNode* root)
{if (root == NULL){return;}printf("%d ", root->data);PreOrder(root->left);PreOrder(root->right);
}

根据以上代码:进入函数先打印根节点存储的值,再递归左子树,左子树递归完后再递归右子树。不要忘了,如果遇到空节点记得要返回。

前序遍历的步骤

  1. 打印根节点的值为1
  2. 递归左子树,创建根节点左孩子节点2的函数栈帧
  3. 打印节点2的值为2,创建节点2的左孩子节点4的函数栈帧
  4. 打印节点4的值为4,创建节点4的左孩子节点的函数栈帧
  5. 节点4的左孩子节点为空,返回节点4的函数栈帧
  6. 创建节点4的右孩子节点的函数栈帧
  7. 节点4的右孩子节点为空,返回节点4的函数栈帧
  8. 节点4的函数栈帧被销毁,返回节点2的函数栈帧
  9. 创建节点2的右孩子节点5的函数栈帧
  10. 打印节点5的值为5,创建节点5的左孩子节点的函数栈帧
  11. 节点5的左孩子节点为空,返回节点5的函数栈帧
  12. 创建节点5的右孩子节点的函数栈帧
  13. 节点5的右孩子节点为空,返回节点5的函数栈帧
  14. 节点5的函数栈帧被销毁,返回节点2的函数栈帧
  15. 节点2的函数栈帧被销毁,返回根节点的函数栈帧
  16. 创建根节点的右孩子节点3的函数栈帧
  17. 打印节点3的值为3,创建节点3的左孩子节点6的函数栈帧
  18. 打印节点6的值为6,创建节点6的左孩子节点的函数栈帧
  19. 节点6的左孩子节点为空,返回节点6的函数栈帧
  20. 创建节点6的右孩子节点的函数栈帧
  21. 节点6的右孩子节点为空,返回节点6的函数栈帧
  22. 节点6的函数栈帧被销毁,返回节点3的函数栈帧
  23. 创建节点3的右孩子节点的函数栈帧
  24. 节点3的右孩子节点为空,返回节点3的函数栈帧
  25. 节点3的函数栈帧被销毁,返回根节点的函数栈帧
  26. 根节点的函数栈帧被销毁

所以前序遍历的结果为:1 2 4 5 3 6

中序遍历和后序遍历与前序遍历的思路一样,只是打印节点的值和递归左右子树的顺序不同而已

2.2.2 中序遍历

思路:先遍历根节点的左子树,再打印根节点的值,最后遍历根节点的右子树,也就是左根右

中序遍历的结果:4 2 5 1 6 3

//中序遍历
void InOrder(BTNode* root)
{if (root == NULL){return;}InOrder(root->left);printf("%d ", root->data);InOrder(root->right);
}

2.2.3 后序遍历

思路:先遍历根节点的左子树,再遍历根节点的右子树,最后打印根节点的值,也就是左右根

后序遍历的结果:4 5 2 6 3 1

//后序遍历
void PostOrder(BTNode* root)
{if (root == NULL){return;}PostOrder(root->left);PostOrder(root->right);printf("%d ", root->data);
}

2.3 二叉树节点个数

思路先递归根节点的左子树,再递归根节点的右子树,如果递归到空节点就返回0,最后返回左子树节点个数和右子树节点个数的和再加一

//二叉树结点个数
int BinaryTreeSize(BTNode* root)
{if (root == NULL){return 0;}return 1 + BinaryTreeSize(root->left) + BinaryTreeSize(root->right);
}

2.4 二叉树叶子结点个数

思路:第一种情况:如果递归到的当前节点为空就返回0,第二种情况:如果节点的左右子树为空时说明该节点为叶子节点则返回1,第三种情况:如果递归到的节点既不是空又不是叶子节点,则继续递归该节点的左右子树,即返回该节点左右子树的叶子节点 return BinaryTreeLeafSize(root->left) + BinaryTreeLeafSize(root->right)

//二叉树叶子结点个数
int BinaryTreeLeafSize(BTNode* root)
{if (root == NULL){return 0;}if (root->left == NULL && root->right == NULL){return 1;}return BinaryTreeLeafSize(root->left) + BinaryTreeLeafSize(root->right);
}

2.5 二叉树第k层结点个数

思路因为根节点是第一层,所以每次向下遍历时将k减一,当k=1时当前节点就是在第k层,返回1即可,所以只需一直递归节点的左右子树,每次递归节点的左右子树时还要让k减一。当递归到的节点为空时,只需返回0即可,要先判断节点为不为空,如果不为空再判断当前节点是不是在第k层。

//二叉树第k层结点个数
int BinaryTreeLevelKSize(BTNode* root, int k)
{if (root == NULL){return 0;}if (k == 1){return 1;}return BinaryTreeLevelKSize(root->left, k - 1) + BinaryTreeLevelKSize(root->right, k - 1);
}

2.6 二叉树的深度/高度

思路因为二叉树的左右子树的高度可能不一样,所以要分开递归二叉树的左右子树,然后再取最大值即可。当递归到空节点时返回0,否则继续递归当前节点的左右子树,最后返回左右子树深度的最大值再加一(因为当前的根节点也是一层)

//二叉树的深度/高度
int BinaryTreeDepth(BTNode* root)
{if (root == NULL){return 0;}int leftDepth = BinaryTreeDepth(root->left);int rightDepth = BinaryTreeDepth(root->right);return leftDepth > rightDepth ? leftDepth + 1 : rightDepth + 1;
}

2.7 二叉树查找值为x的结点

思路先遍历根节点的左子树,如果找到了值为x的节点就返回该节点的地址,右子树也无需再遍历了,如果没有找到再遍历右子树,如果找到了就返回该节点的地址,没有找到则返回空。再遍历的过程中,先判断节点是否为空,如果为空就返回空,不为空的话再判断该节点的值是不是x,如果是就返回该节点的地址,如果不是就继续遍历该节点的左右子树。

//二叉树查找值为x的结点
BTNode* BinaryTreeFind(BTNode* root, BTDataType x)
{if (root == NULL){return NULL;}if (root->data == x){return root;}BTNode* leftfind = BinaryTreeFind(root->left, x);if (leftfind){return leftfind;}BTNode* rightfind = BinaryTreeFind(root->right, x);if (rightfind){return rightfind;}return NULL;
}

2.8 层序遍历

这里需要借助队列,不熟悉的可以看一下数据结构—队列

层序遍历是指从根节点开始一层一层遍历二叉树,从上至下,从左至右,依次访问节点,如下图,该二叉树的层序遍历结果为:1 2 3 4 5 6

请添加图片描述
使用队列这个数据结构来实现层序遍历,队列的特点是先进先出首先将根节点放入队列中,再将根节点出队,最后将根节点的左右孩子节点入队。将根节点的左孩子2出队,然后将根节点的左孩子2的左右孩子节点入队,以此类推……一直到队列为空

在这里插入图片描述

//层序遍历
void LevelOrder(BTNode* root)
{Queue q;QueueInit(&q);QueuePush(&q, root);while (!QueueEmpty(&q)){BTNode* front = QueueFront(&q);printf("%d ", front->data);QueuePop(&q);if (front->left){QueuePush(&q, front->left);}if (front->right){QueuePush(&q, front->right);}}QueueDestroy(&q);
}

2.9 判断二叉树是否为完全二叉树

思路同样还是借助队列这个数据结构,与层序遍历不同的是,当节点的左右孩子节点为空时也要进行入队操作,当队头为空时,就退出循环,然后还需要判断队列里有没有不为空的节点,如果有说明二叉树不为完全二叉树,如果没有说明二叉树为完全二叉树

//判断二叉树是否为完全二叉树
bool BinaryTreeComplete(BTNode* root)
{Queue q;QueueInit(&q);QueuePush(&q, root);while (!QueueEmpty(&q)){BTNode* front = QueueFront(&q);QueuePop(&q);if (front == NULL){break;}QueuePush(&q, front->left);QueuePush(&q, front->right);}while (!QueueEmpty(&q)){BTNode* front = QueueFront(&q);QueuePop(&q);if (front){QueueDestroy(&q);return false;}}QueueDestroy(&q);return true;
}

2.10 二叉树的销毁

思路因为要销毁整个二叉树包括根节点,所以这里传递的是二级指针去接收一级指针的地址,这样就实现了形参改变实参。先销毁根节点的左子树和右子树,也就是递归到叶子节点开始销毁,然后往上一层一层地进行销毁,最后再销毁根节点。

//二叉树销毁
void BinaryTreeDestory(BTNode** root)
{if (*root == NULL){return;}BinaryTreeDestory(&((*root)->left));BinaryTreeDestory(&((*root)->right));free(*root);*root = NULL;
}

3. 源代码

Tree.h头文件

#pragma once
#include<stdio.h>
#include<stdlib.h>
#include<assert.h>
#include<stdbool.h>//定义二叉树的链式结构
//二叉树结点的结构
typedef int BTDataType;
typedef struct BinaryTreeNode {BTDataType data;//存储数据struct BinaryTreeNpde* left;//指向左孩子结点的指针struct BinaryTreeNode* right;//指向右孩子结点的指针
}BTNode;//创建二叉树新节点
BTNode* buyNode(BTDataType x);
//创建一个二叉树
BTNode* CreateTree();
//前序遍历
void PreOrder(BTNode* root);
//中序遍历
void InOrder(BTNode* root);
//后序遍历
void PostOrder(BTNode* root);
//二叉树结点个数
int BinaryTreeSize(BTNode* root);
//二叉树叶子结点个数
int BinaryTreeLeafSize(BTNode* root);
//二叉树第k层结点个数
int BinaryTreeLevelKSize(BTNode* root, int k);
//二叉树的深度/高度
int BinaryTreeDepth(BTNode* root);
//二叉树查找值为x的结点
BTNode* BinaryTreeFind(BTNode* root, BTDataType x);
//二叉树销毁
void BinaryTreeDestory(BTNode** root);
//层序遍历
void LevelOrder(BTNode* root);
//判断二叉树是否为完全二叉树
bool BinaryTreeComplete(BTNode* root);

Tree.c源文件

#include "Tree.h"
#include "Queue.h"
//创建二叉树新节点
BTNode* buyNode(BTDataType x)
{BTNode* newnode = (BTNode*)malloc(sizeof(BTNode));if (newnode == NULL){perror("malloc fail!");exit(1);}newnode->data = x;newnode->left = newnode->right = NULL;return newnode;
}
//前序遍历
void PreOrder(BTNode* root)
{if (root == NULL){return;}printf("%d ", root->data);PreOrder(root->left);PreOrder(root->right);
}
//中序遍历
void InOrder(BTNode* root)
{if (root == NULL){return;}InOrder(root->left);printf("%d ", root->data);InOrder(root->right);
}
//后序遍历
void PostOrder(BTNode* root)
{if (root == NULL){return;}PostOrder(root->left);PostOrder(root->right);printf("%d ", root->data);
}
//二叉树结点个数
int BinaryTreeSize(BTNode* root)
{if (root == NULL){return 0;}return 1 + BinaryTreeSize(root->left) + BinaryTreeSize(root->right);
}
//二叉树叶子结点个数
int BinaryTreeLeafSize(BTNode* root)
{if (root == NULL){return 0;}if (root->left == NULL && root->right == NULL){return 1;}return BinaryTreeLeafSize(root->left) + BinaryTreeLeafSize(root->right);
}
//二叉树第k层结点个数
int BinaryTreeLevelKSize(BTNode* root, int k)
{if (root == NULL){return 0;}if (k == 1){return 1;}return BinaryTreeLevelKSize(root->left, k - 1) + BinaryTreeLevelKSize(root->right, k - 1);
}
//二叉树的深度/高度
int BinaryTreeDepth(BTNode* root)
{if (root == NULL){return 0;}int leftDepth = BinaryTreeDepth(root->left);int rightDepth = BinaryTreeDepth(root->right);return leftDepth > rightDepth ? leftDepth + 1 : rightDepth + 1;
}
//二叉树查找值为x的结点
BTNode* BinaryTreeFind(BTNode* root, BTDataType x)
{if (root == NULL){return NULL;}if (root->data == x){return root;}BTNode* leftfind = BinaryTreeFind(root->left, x);if (leftfind){return leftfind;}BTNode* rightfind = BinaryTreeFind(root->right, x);if (rightfind){return rightfind;}return NULL;
}
//二叉树销毁
void BinaryTreeDestory(BTNode** root)
{if (*root == NULL){return;}BinaryTreeDestory(&((*root)->left));BinaryTreeDestory(&((*root)->right));free(*root);*root = NULL;
}
//层序遍历
void LevelOrder(BTNode* root)
{Queue q;QueueInit(&q);QueuePush(&q, root);while (!QueueEmpty(&q)){BTNode* front = QueueFront(&q);printf("%d ", front->data);QueuePop(&q);if (front->left){QueuePush(&q, front->left);}if (front->right){QueuePush(&q, front->right);}}QueueDestroy(&q);
}
//判断二叉树是否为完全二叉树
bool BinaryTreeComplete(BTNode* root)
{Queue q;QueueInit(&q);QueuePush(&q, root);while (!QueueEmpty(&q)){BTNode* front = QueueFront(&q);QueuePop(&q);if (front == NULL){break;}QueuePush(&q, front->left);QueuePush(&q, front->right);}while (!QueueEmpty(&q)){BTNode* front = QueueFront(&q);QueuePop(&q);if (front){QueueDestroy(&q);return false;}}QueueDestroy(&q);return true;
}

test.c源文件

#include "Tree.h"BTNode* CreateTree()
{BTNode* node1 = buyNode(1);BTNode* node2 = buyNode(2);BTNode* node3 = buyNode(3);BTNode* node4 = buyNode(4);BTNode* node5 = buyNode(5);BTNode* node6 = buyNode(6);node1->left = node2;node1->right = node3;node2->left = node4;node2->right = node5;node3->left = node6;return node1;
}void BinaryTreeTest01()
{BTNode* node1 = CreateTree();PreOrder(node1);printf("\n");InOrder(node1);printf("\n");PostOrder(node1);printf("\n");printf("%d\n", BinaryTreeSize(node1));printf("%d\n", BinaryTreeLeafSize(node1));printf("第%d层结点个数为:%d\n", 3, BinaryTreeLevelKSize(node1, 3));printf("%d\n", BinaryTreeDepth(node1));if (BinaryTreeFind(node1, 10) == NULL){printf("没有找到\n");}else{printf("找到了\n");}LevelOrder(node1);printf("\n");printf("%s\n", BinaryTreeComplete(node1) == true ? "是完全二叉树" : "不是完全二叉树");BinaryTreeDestory(&node1);
}
int main()
{BinaryTreeTest01();return 0;
}

对以上内容有不同看法的欢迎来讨论,希望对大家的学习有帮助,多多支持哦!

相关文章:

数据结构:二叉树(链式结构)

文章目录 1. 二叉树的链式结构2. 二叉树的创建和实现相关功能2.1 创建二叉树2.2 二叉树的前&#xff0c;中&#xff0c;后序遍历2.2.1 前序遍历2.2.2 中序遍历2.2.3 后序遍历 2.3 二叉树节点个数2.4 二叉树叶子结点个数2.5 二叉树第k层结点个数2.6 二叉树的深度/高度2.7 二叉树…...

召唤生命,阻止轻生——《生命门外》

本书的目的&#xff0c;就是阻止自杀&#xff01;拉回那些深陷在这样的思维当中正在挣扎犹豫的人&#xff0c;提醒他们珍爱生命&#xff0c;让更多的人&#xff0c;尤其是年轻人从执迷不悟的犹豫徘徊中幡然醒悟&#xff0c;回归正常的生活。 网络上抱孩子跳桥轻生的母亲&#…...

JVM:栈上的数据存储

文章目录 一、Java虚拟机中的基本数据类型 一、Java虚拟机中的基本数据类型 在Java中有8大基本数据类型&#xff1a; 这里的内存占用&#xff0c;指的是堆上或者数组中内存分配的空间大小&#xff0c;栈上的实现更加复杂。 Java中的8大数据类型在虚拟机中的实现&#xff1a;…...

C#实战 - C#实现发送邮件的三种方法

作者&#xff1a;逍遥Sean 简介&#xff1a;一个主修Java的Web网站\游戏服务器后端开发者 主页&#xff1a;https://blog.csdn.net/Ureliable 觉得博主文章不错的话&#xff0c;可以三连支持一下~ 如有疑问和建议&#xff0c;请私信或评论留言&#xff01; 前言 当使用 C# 编程…...

数模原理精解【5】

文章目录 二元分布满足要求边际分布条件概率例子1例子2 损失函数概率分布期望值例 参考文献 二元分布 满足要求 连续情况下&#xff0c; φ ( x , y ) \varphi (x,y) φ(x,y)为随机变量 X 、 Y X、Y X、Y的联合概率分布(二元分布)&#xff0c;如果以下条件满足&#xff1a; …...

C语言篇——使用运算符将16进制数据反转

比如&#xff1a;将一个16进制0xFD&#xff0c;即11111101&#xff0c;反向&#xff0c;输出10111111&#xff0c;即0xBF。 #include <stdio.h>unsigned char reverseBits(unsigned char num) {unsigned char reverse_num 0;int i;for (i 0; i < 8; i) {if ((num &…...

2025年和2024CFA一级SchweserKaplan Notes 全集 (内附分享链接)

CFA一级notes百度网盘下载 2024年和2025年 CFA一级考纲已经正式发布&#xff0c;相比与老考纲&#xff0c;新考纲变化实在不算小。 2024年和2025年 CFA一级notes完整版全 https://drive.uc.cn/s/6394c0b6b1a54?public1 2024年和2025年 cfa二级notes完整版全 https://driv…...

B树的实现:代码示例与解析

B树的实现&#xff1a;代码示例与解析 引言 B树是一种自平衡的树数据结构&#xff0c;广泛应用于文件系统和数据库系统中。它是一种多路搜索树&#xff0c;旨在保持数据有序并允许高效的查找、插入和删除操作。本文将深入探讨B树的实现&#xff0c;提供完整的代码示例和详细的…...

HCIA总结

一、情景再现&#xff1a;ISP网络为学校提供了DNS服务&#xff0c;所以&#xff0c;DNS服务器驻留在ISP网络内&#xff0c;而不再学校网络内。DHCP服务器运行在学校网络的路由器上 小明拿了一台电脑&#xff0c;通过网线&#xff0c;接入到校园网内部。其目的是为了访问谷歌网站…...

软件测试_接口测试面试题

接口测试是软件测试中的重要环节&#xff0c;它主要验证系统不同模块之间的通信和数据交互是否正常。在软件开发过程中&#xff0c;各个模块之间的接口是实现功能的关键要素&#xff0c;因此对接口进行全面而准确的测试是确保系统稳定性和可靠性的关键步骤。 接口测试的核心目…...

C++初阶学习第五弹——类与对象(下)

类与对象&#xff08;上&#xff09;&#xff1a;C初阶学习第三弹——类与对象&#xff08;上&#xff09;-CSDN博客 类和对象&#xff08;中&#xff09;&#xff1a;C初阶学习第四弹——类与对象&#xff08;中&#xff09;-CSDN博客 一.赋值运算符重载 1.1 运算符重载 C为…...

最低工资标准数据(2001-2023年不等)、省市县,整理好的面板数据(excel格式)

时间范围&#xff1a;2001-2022年 具体内容&#xff1a;一&#xff1a;最低工资数据标准时间&#xff1a;2012-2021包含指标&#xff1a; 省份城市/区县小时最低工资标准&#xff08;非全日制&#xff09;月最低工资标准实施日期 样例数据&#xff1a; 二&#xff1a;各省最低…...

计算机毕业设计选题推荐-戏曲文化体验系统-Java/Python项目实战

✨作者主页&#xff1a;IT毕设梦工厂✨ 个人简介&#xff1a;曾从事计算机专业培训教学&#xff0c;擅长Java、Python、微信小程序、Golang、安卓Android等项目实战。接项目定制开发、代码讲解、答辩教学、文档编写、降重等。 ☑文末获取源码☑ 精彩专栏推荐⬇⬇⬇ Java项目 Py…...

【深度学习】CosyVoice,论文

CosyVoice_v1.pdf 文章目录 CosyVoice: A Scalable Multilingual Zero-shot Text-to-speech Synthesizer based on Supervised Semantic Tokens摘要1 引言2 CosyVoice: 使用监督语义标记的可扩展TTS模型2.1 用于语音的监督语义标记2.2 用于TTS的大型语言模型2.3 最优传输条件流…...

PHP8.3.9安装记录,Phpmyadmin访问提示缺少mysqli

ubuntu 22.0.4 腾讯云主机 下载好依赖 sudo apt update sudo apt install -y build-essential libxml2-dev libssl-dev libcurl4-openssl-dev pkg-config libbz2-dev libreadline-dev libicu-dev libsqlite3-dev libwebp-dev 下载php8.3.9安装包 nullhttps://www.php.net/d…...

[译] 深入浅出Rust基金会

本篇是对 RustConf 2023中的Rust Foundation: Demystified这一视频的翻译与整理, 过程中为符合中文惯用表达有适当删改, 版权归原作者所有. 大家好,我是Sage Griffin,我的代词是they/them。我今天来这里是要谈谈Rust基金会。 要了解基金会实际做什么,我们需要理解美国国内税收…...

Postman:API开发与测试的强大伴侣

在当今的数字化时代&#xff0c;API&#xff08;应用程序编程接口&#xff09;已成为不同软件系统之间通信的桥梁&#xff0c;它们如同数字世界的“翻译官”&#xff0c;使得数据和服务能够在不同的平台和应用程序之间无缝流动。然而&#xff0c;API的开发、测试和维护并非易事…...

Web应用的视界革命:WebKit支持屏幕方向API的深度解析

Web应用的视界革命&#xff1a;WebKit支持屏幕方向API的深度解析 在现代Web应用开发中&#xff0c;屏幕方向的适应性是一个重要的考虑因素。屏幕方向API&#xff08;Screen Orientation API&#xff09;提供了一种方法&#xff0c;允许Web应用知道并响应屏幕的方向变化&#x…...

【前端】一文带你了解 CSS

文章目录 1. CSS 是什么2. CSS 引入方式2.1 内部样式2.2 外部样式2.3 内联样式 3. CSS 常见选择器3.1 基础选择器3.1.1 标签选择器3.1.2 类选择器3.1.3 id 选择器3.1.4 通配符选择器 3.2 复合选择器3.2.1 后代选择器 4. CSS 常用属性4.1 字体相关4.2 文本相关4.3 背景相关4.4 设…...

IT服务运营管理中的关键考核指标

IT服务运营过程中常见的关键考核指标体现在人员、技术、资源、过程、质量等要素中&#xff0c;下面把常见的考核项目、计算方式、考核周期罗列如下&#xff0c;本考核指标主要用于对IT服务运营单位或部门的考核。 IT服务运营管理关键考核指标 要素考核项目计算方式常见考核周期…...

【Axure高保真原型】引导弹窗

今天和大家中分享引导弹窗的原型模板&#xff0c;载入页面后&#xff0c;会显示引导弹窗&#xff0c;适用于引导用户使用页面&#xff0c;点击完成后&#xff0c;会显示下一个引导弹窗&#xff0c;直至最后一个引导弹窗完成后进入首页。具体效果可以点击下方视频观看或打开下方…...

19c补丁后oracle属主变化,导致不能识别磁盘组

补丁后服务器重启&#xff0c;数据库再次无法启动 ORA01017: invalid username/password; logon denied Oracle 19c 在打上 19.23 或以上补丁版本后&#xff0c;存在与用户组权限相关的问题。具体表现为&#xff0c;Oracle 实例的运行用户&#xff08;oracle&#xff09;和集…...

Android Wi-Fi 连接失败日志分析

1. Android wifi 关键日志总结 (1) Wi-Fi 断开 (CTRL-EVENT-DISCONNECTED reason3) 日志相关部分&#xff1a; 06-05 10:48:40.987 943 943 I wpa_supplicant: wlan0: CTRL-EVENT-DISCONNECTED bssid44:9b:c1:57:a8:90 reason3 locally_generated1解析&#xff1a; CTR…...

Golang 面试经典题:map 的 key 可以是什么类型?哪些不可以?

Golang 面试经典题&#xff1a;map 的 key 可以是什么类型&#xff1f;哪些不可以&#xff1f; 在 Golang 的面试中&#xff0c;map 类型的使用是一个常见的考点&#xff0c;其中对 key 类型的合法性 是一道常被提及的基础却很容易被忽视的问题。本文将带你深入理解 Golang 中…...

从零实现富文本编辑器#5-编辑器选区模型的状态结构表达

先前我们总结了浏览器选区模型的交互策略&#xff0c;并且实现了基本的选区操作&#xff0c;还调研了自绘选区的实现。那么相对的&#xff0c;我们还需要设计编辑器的选区表达&#xff0c;也可以称为模型选区。编辑器中应用变更时的操作范围&#xff0c;就是以模型选区为基准来…...

前端导出带有合并单元格的列表

// 导出async function exportExcel(fileName "共识调整.xlsx") {// 所有数据const exportData await getAllMainData();// 表头内容let fitstTitleList [];const secondTitleList [];allColumns.value.forEach(column > {if (!column.children) {fitstTitleL…...

DBAPI如何优雅的获取单条数据

API如何优雅的获取单条数据 案例一 对于查询类API&#xff0c;查询的是单条数据&#xff0c;比如根据主键ID查询用户信息&#xff0c;sql如下&#xff1a; select id, name, age from user where id #{id}API默认返回的数据格式是多条的&#xff0c;如下&#xff1a; {&qu…...

稳定币的深度剖析与展望

一、引言 在当今数字化浪潮席卷全球的时代&#xff0c;加密货币作为一种新兴的金融现象&#xff0c;正以前所未有的速度改变着我们对传统货币和金融体系的认知。然而&#xff0c;加密货币市场的高度波动性却成为了其广泛应用和普及的一大障碍。在这样的背景下&#xff0c;稳定…...

九天毕昇深度学习平台 | 如何安装库?

pip install 库名 -i https://pypi.tuna.tsinghua.edu.cn/simple --user 举个例子&#xff1a; 报错 ModuleNotFoundError: No module named torch 那么我需要安装 torch pip install torch -i https://pypi.tuna.tsinghua.edu.cn/simple --user pip install 库名&#x…...

处理vxe-table 表尾数据是单独一个接口,表格tableData数据更新后,需要点击两下,表尾才是正确的

修改bug思路&#xff1a; 分别把 tabledata 和 表尾相关数据 console.log() 发现 更新数据先后顺序不对 settimeout延迟查询表格接口 ——测试可行 升级↑&#xff1a;async await 等接口返回后再开始下一个接口查询 ________________________________________________________…...