当前位置: 首页 > news >正文

SAM 2: Segment Anything in Images and Videos

Introduction

提出的目的
1.现有的应用像自动驾驶,AR等来说都是需要temporal localization beyond image-level segmentation(时序定位而不仅是图片分割)
2. 一个好的分割模型不应该仅仅局限于图片领域,而是图视频两者兼具
3. 视频的分割,需要进行时空分割物体,需要有时空分割的能力,比起图片分割更为困难。除此之外,视频相较于图片会有物体被遮挡等问题,即更为困难的分割。除此之外,视频拥有多帧的特点,如何“高效”处理这些帧也是一个难点。毕竟没卡 0.0

Our work

  1. 提出了集合图片和视频的分割模型,(将图片当作一帧的图片):图片-short video-long video
  2. 我们的工作集中于Promptable Visual Segmentation (PVS) task,可以人先指定感兴趣的区域作为prompt生成时空mask(the spatio-temporal mask (i.e., a ‘masklet’)),其他帧基于这个mask然后得到提示也进行分割。
  3. 从intro看出就是提了一个memory将之前分割结果和交互历史进行存储,以便后续分割得到prompt。 Our streaming architecture is a natural generalization of SAM to the video domain, processing video frames one at a time, equipped with a memory attention module to attend to the previous memories of the target object. 一个更general的版本,但是感觉看起来方法不新emmm,我到看方法部分再看看。memory部分其实是比较常用的。
    模型pipeline
  4. We employ a data engine to generate training data by using our model in the loop with annotators to
    interactively annotate new and challenging data. - 利用这个模型生成了更好的数据集,不局限于特定的类别,而是包括物体的组件等都有标注。并且这个数据engine生成速度很快8*faster,而且生成的数据包括一些特别小的部分和时而消失时而出现的物体。(更快生成更接近现实的标注数据)
  5. 效果:超过了之前sam在所有图片领域分割效果,打败了所有视频物体分割benchmark模型,且效果是所有图片视频分割benchmark中最好的,而且是zero-shot(泛化能力强)。交互步骤也降低了,速度也更快了。
    总的话来说:更快更好的general视频图片分割模型。
  6. SAM2的流式处理架构使得它能够逐帧处理视频数据,这在实时应用中非常有用。(重点)

Model

新任务:Task: promptable visual segmentation- 这是一个比较general的任务,你可以给的prompt随意一帧也可以在多帧,可以是点击也可以是一个bbox或者mask等。比起其他的分割任务,它这个是所有此类任务的集合。(Our work shares a similar goal to these works to segment objects across videos with a good interactive
experience, and we build a strong model along with a large and diverse dataset in pursuit of this goal)
模块: 感觉每个模块都用效果好的和速度快的来试

  • Image encoder. 和之前不一样用了一个有多尺度特征的编码器( hierarchical image encoder),因为可以在mask decoder用上(解决高分辨率问题),这也是它速度快的原因,比较轻量化。在后续补充说明中,强调了用了哪种位置编码,反正没用相对位置编码,看了看实验部分主要是为了速度和效率考虑的。
  • Memory attention. We use vanilla attention operations for self- and cross-attention, allowing us to benefit from recent developments in efficient attention kernels。补充说明了加了2d位置编码
  • Prompt encoder and mask decoder. 此模块主要强调 prompt的general,以及不同prompt的处理方法。然后mask decoder有两块不一样:一是 用了 skip connection to incorporate high-resolution information for mask decoding。二是显示的建模 是否存在prompt需要分割的物体:we add an additional head that predicts whether the object of interest is present 。(视频有些帧可能目标物体消失了)补充说明部分是说如果不确定物体时候,输出多个mask
    mask decoder- Memory encoder. 将生成的mask进行conv编码+原来的image encoder出来的编码 再进一个conv得到的feat存储进bank中,其实我有个疑问,那如果这个mask是错误的呢?是不是要正确的才存储?或者说分数要达到一定程度。
  • Memory bank. 这个bank存储上面encoder的编码和prompt frame编码,利用了一个 FIFO 队列来存储,即先进先出存储当前帧的前N帧(context最相关更有借鉴价值),其实这个FIFO在很多视频地方也用过的。前面的内容统一称为spatial feature maps。还有一类也存储了,即object pointers,作为high-level 特征也是轻量化的特征。并且上述两类特征中前N帧特征会加入时序位置编码来让模型学会short-term object motion。 补充说明编码是将256dim的特征分成了4个token,每个token64dim变得更smaller(实验部分说的)。

DATA AND TRAINING

提了一个很大的数据集
训练用了很多trick可以去看看补充部分,后续有时间看吧。

Question

我其实还有一些问题
比如在这里插入图片描述
这里面黄色这块内容为什么有了memory就能解决这个问题呢。

Conclusion

感觉收获满满
1.每个组件之前都有,怎么组合能够达到效果最好,效率最高。
2.提了一个非常nice的数据集是对这个行业的非常大的贡献。
3.怎么选择好的pretrain encoder
4.memory如何轻量化和最有价值化,相信每个搞video的人多多少少都知道memory哈哈哈…
5.实时处理是亮点,随机prompt来让整体更方便用户交互使用也是亮点
膜拜~

另外其他资料:
知乎写的也比较nice

相关文章:

SAM 2: Segment Anything in Images and Videos

Introduction 提出的目的: 1.现有的应用像自动驾驶,AR等来说都是需要temporal localization beyond image-level segmentation(时序定位而不仅是图片分割) 2. 一个好的分割模型不应该仅仅局限于图片领域,而是图视频两…...

软件测试面试,如何自我介绍?

又是一年金九银十,相信不少小伙伴都在准备跳槽面试,而面试中一个必不可少的环节就是自我介绍,所以,今天我们就来聊一聊软件测试面试中如何自我介绍。 为什么要自我介绍 在讨论如何自我介绍之前,我们先来讨论一下为…...

力扣第四十七题——全排列II

内容介绍 给定一个可包含重复数字的序列 nums ,按任意顺序 返回所有不重复的全排列。 示例 1: 输入:nums [1,1,2] 输出: [[1,1,2],[1,2,1],[2,1,1]]示例 2: 输入:nums [1,2,3] 输出:[[1,2,3],…...

Springer旗下中科院2区TOP,国人优势大!

关注GZH【欧亚科睿学术】,第一时间了解期刊最新动态! 1 通信网络类 【期刊简介】IF:4.0-5.0,JCR1区,中科院3区 【出版社】ELSEVIER出版社 【检索情况】SCIE&EI双检,CCF-C类 【征稿领域】通信网络的…...

【C++】C++入门知识详解(下)

大家好~我们接着【C】C入门知识详解(上)-CSDN博客来介绍另一些C入门基础知识。 1.缺省值和缺省参数 缺省参数就是声明或定义函数时为函数的参数指定一个缺省参数。在调用该函数时,如果没有指定实参,则采用该形参的缺省值&#xf…...

分压电阻方式的ADC电压校准

无人机有个流程是电池电压校准。具体做法是:让你用万用表测量一下电池两端的电压,然后输入到文本框中,电机计算能重新计算出电压分压器的值,从而获得电池电压值。 这种方法实现的原理是这样的: 电阻分压检测电压原理,以上图为例: 当电路确定时,R2/(R1+R2)是一个定值R,…...

使用Postman测试API短轮询机制:深入指南

短轮询是一种Web开发中常用的技术,用于在客户端和服务器之间定期检查更新。与长轮询或WebSockets等技术相比,短轮询简单易实现,但可能带来较多的HTTP请求,从而增加服务器负担。Postman作为一个强大的API测试工具,可以用…...

明清进士人数数据

明清进士人数数据 指标:省份名称、城市名称、区县名称、明清各省进士人数、明清各城市进士人数、明清各县区进士人数 指标说明: Province[省份名称]-统计数据所属省份 City[城市名称]-统计数据所属地级市 Region[区县名称]-统计数据所属区县 MQpro…...

C# 串口通信(通过serialPort控件发送及接收数据)

连接串口 界面设计打开串口发送数据通过文件发送发送数据 接收数据 首先可以在 工具箱中搜索serialport,将控件拖到你的Winfrom窗口。 界面设计 打开串口 private void Connect_Click(object sender, EventArgs e){serialPort1.PortName comboBox2.Text;//端口名s…...

数据安全的新盾牌:SQL Server数据库镜像技术详解

数据安全的新盾牌:SQL Server数据库镜像技术详解 在数据驱动的商业世界中,数据库的安全性是维护企业运营的关键。SQL Server提供了多种数据保护机制,其中数据库镜像技术是一个强大的高可用性解决方案,它可以显著提高数据的安全性…...

【C语言版】数据结构教程(一)绪论(上)

【内容简介】本文整理数据结构(C语言版)相关内容的复习笔记,供各位朋友借鉴学习。本章内容更偏于记忆和理解,请读者们耐心阅读。 数据结构教程 绪论(上) 本节学习目标 1.1 基本概念 1.2 抽象数据类型的表示…...

酒后为什么总感觉渴?

喝酒后感到口渴,这种感觉其实很常见。这主要是因为酒精对我们的身体有几种影响。首先,酒精能够扩张血管,这会加快血液循环,让肾脏更加活跃,产生更多的尿液。这样一来,我们体内的水分就会通过排尿流失&#…...

Docker安装OwnCloud私有云盘对接ceph

一、安装OwnCloud 我的安装包链接:https://pan.baidu.com/s/1cJO8WEonsw4gGQWgQaYzpw?pwd6bak 提取码:6bak 启动OwnCloud容器,没有镜像会自动下载 docker run -d -p 80:80 -v /home/owncloud:/var/www/html --name owncloud --restartalway…...

创建了Vue项目,需要导入什么插件以及怎么导入

如果你不知道怎么创建Vue项目,建议可以看一看这篇文章 怎么安装Vue的环境和搭建Vue的项目-CSDN博客 1.在idea中打开目标文件 2.系在一个插件Vue.js 3.下载ELement UI 在Terminal中输入 # 切换到项目根目录 cd vueadmin-vue # 或者直接在idea中执行下面命令 # 安装element-u…...

abstract 关键字

在C#中,abstract 关键字是一个非常重要的特性,它用于定义抽象类和抽象成员(如方法、属性、索引器、事件或操作符)。使用 abstract 关键字的目的主要是为了提供一种机制,让基类能够指定一个或多个必须由派生类实现的方法…...

用Python编写你的网络监控系统详解

概要 在现代网络管理中,实时监控网络流量和状态是保证网络正常运行的关键。使用Python编写网络监控工具可以帮助管理员及时发现和解决网络问题。本文将详细介绍如何使用Python编写网络监控工具,包括基本概念、常用库及其应用场景,并提供相应的示例代码。 网络监控的基本概念…...

操作系统——虚拟内存

一、虚拟内存是什么? 虚拟内存类似一个桥梁,原来程序直接访问物理内存读取数据,现在程序直接访问虚拟内存,由虚拟内存再访问物理内存。 使用虚拟内存的好处: 隔离进程、提高内存使用安全性:每个进程直接…...

Zoom视频会议软件使用

Zoom 是一款广泛使用的视频会议软件,可以用于在线会议、网络研讨会、课堂教学、团队协作等。以下是使用 Zoom 的基本步骤和一些有用的技巧: 安装 Zoom 下载并安装: 访问 Zoom 下载页面。下载适用于你的操作系统(Windows, macOS, Linux, iOS, Android)的客户端。安装完成后…...

MVC软件设计模式及QT的MVC架构

目录 引言 一、MVC思想介绍 1.1 MCV模型概述 1.2 Excel的处理数据 1.3 MVC模式的优势 二、QT中的MVC 1.1 模型(Model) 1. QAbstractItemModel 2. QStringListModel 3. QStandardItemModel 4. QSqlTableModel 和 QSqlQueryModel 5. QAbstract…...

使用WSL通过SSH连接并运行图形界面程序

使用WSL通过SSH连接并运行图形界面程序 1. 在Windows上安装X服务器2. 配置并启动VcXsrv3. 在WSL Ubuntu中设置DISPLAY变量4. 从WSL Ubuntu连接到远程服务器5. 在远程服务器上设置DISPLAY变量6. 测试X11转发7. 运行您的安装程序注意事项 在Windows Subsystem for Linux (WSL) 上…...

【Linux】shell脚本忽略错误继续执行

在 shell 脚本中,可以使用 set -e 命令来设置脚本在遇到错误时退出执行。如果你希望脚本忽略错误并继续执行,可以在脚本开头添加 set e 命令来取消该设置。 举例1 #!/bin/bash# 取消 set -e 的设置 set e# 执行命令,并忽略错误 rm somefile…...

Golang 面试经典题:map 的 key 可以是什么类型?哪些不可以?

Golang 面试经典题:map 的 key 可以是什么类型?哪些不可以? 在 Golang 的面试中,map 类型的使用是一个常见的考点,其中对 key 类型的合法性 是一道常被提及的基础却很容易被忽视的问题。本文将带你深入理解 Golang 中…...

工业安全零事故的智能守护者:一体化AI智能安防平台

前言: 通过AI视觉技术,为船厂提供全面的安全监控解决方案,涵盖交通违规检测、起重机轨道安全、非法入侵检测、盗窃防范、安全规范执行监控等多个方面,能够实现对应负责人反馈机制,并最终实现数据的统计报表。提升船厂…...

Redis相关知识总结(缓存雪崩,缓存穿透,缓存击穿,Redis实现分布式锁,如何保持数据库和缓存一致)

文章目录 1.什么是Redis?2.为什么要使用redis作为mysql的缓存?3.什么是缓存雪崩、缓存穿透、缓存击穿?3.1缓存雪崩3.1.1 大量缓存同时过期3.1.2 Redis宕机 3.2 缓存击穿3.3 缓存穿透3.4 总结 4. 数据库和缓存如何保持一致性5. Redis实现分布式…...

Docker 运行 Kafka 带 SASL 认证教程

Docker 运行 Kafka 带 SASL 认证教程 Docker 运行 Kafka 带 SASL 认证教程一、说明二、环境准备三、编写 Docker Compose 和 jaas文件docker-compose.yml代码说明:server_jaas.conf 四、启动服务五、验证服务六、连接kafka服务七、总结 Docker 运行 Kafka 带 SASL 认…...

解决Ubuntu22.04 VMware失败的问题 ubuntu入门之二十八

现象1 打开VMware失败 Ubuntu升级之后打开VMware上报需要安装vmmon和vmnet,点击确认后如下提示 最终上报fail 解决方法 内核升级导致,需要在新内核下重新下载编译安装 查看版本 $ vmware -v VMware Workstation 17.5.1 build-23298084$ lsb_release…...

django filter 统计数量 按属性去重

在Django中,如果你想要根据某个属性对查询集进行去重并统计数量,你可以使用values()方法配合annotate()方法来实现。这里有两种常见的方法来完成这个需求: 方法1:使用annotate()和Count 假设你有一个模型Item,并且你想…...

跨链模式:多链互操作架构与性能扩展方案

跨链模式:多链互操作架构与性能扩展方案 ——构建下一代区块链互联网的技术基石 一、跨链架构的核心范式演进 1. 分层协议栈:模块化解耦设计 现代跨链系统采用分层协议栈实现灵活扩展(H2Cross架构): 适配层&#xf…...

2025盘古石杯决赛【手机取证】

前言 第三届盘古石杯国际电子数据取证大赛决赛 最后一题没有解出来,实在找不到,希望有大佬教一下我。 还有就会议时间,我感觉不是图片时间,因为在电脑看到是其他时间用老会议系统开的会。 手机取证 1、分析鸿蒙手机检材&#x…...

【HTML-16】深入理解HTML中的块元素与行内元素

HTML元素根据其显示特性可以分为两大类:块元素(Block-level Elements)和行内元素(Inline Elements)。理解这两者的区别对于构建良好的网页布局至关重要。本文将全面解析这两种元素的特性、区别以及实际应用场景。 1. 块元素(Block-level Elements) 1.1 基本特性 …...