数据集——鸢尾花介绍和使用
文章目录
- 一、鸢尾花数据集内容
- 二、使用中常转换DataFrame
一、鸢尾花数据集内容
from sklearn import svm, datasets
# 鸢尾花数据
iris = datasets.load_iris()
print(iris.data)
X = iris.data[:, :2] # 为便于绘图仅选择2个特征
y = iris.target

它包含了150个样本,每个样本有4个特征(花瓣的长度、花瓣的宽度、花萼的长度、花萼的宽度),以及样本所属的类别(三种不同的鸢尾花之一)。
iris.data是一个NumPy数组或者类似的数据结构,它包含了数据集中所有样本的特征。具体来说,iris.data的形状(shape)是(150, 4),意味着有150行(样本)和4列(特征)。
当你执行X = iris.data[:, :2]时,你正在执行一个切片操作来选取数据的一部分。这里的:是一个切片操作符,它表示选取该维度的所有元素。
- iris.data[:, :2]中的第一个:表示选取所有行(所有的样本)。
- 第二个:2表示选取每一行的前两个元素(即前两个特征),即花瓣的长度和花瓣的宽度。
X = iris.data[:, :2]的结果是一个新的数组X,它包含了原始数据集iris.data中所有样本的前两个特征,形状为(150, 2)。这样的操作通常用于特征选择,即只选取你认为对模型预测最有帮助的特征。
二、使用中常转换DataFrame
df = pd.DataFrame(iris.data, columns=iris.feature_names)

相关文章:
数据集——鸢尾花介绍和使用
文章目录 一、鸢尾花数据集内容二、使用中常转换DataFrame 一、鸢尾花数据集内容 from sklearn import svm, datasets # 鸢尾花数据 iris datasets.load_iris() print(iris.data) X iris.data[:, :2] # 为便于绘图仅选择2个特征 y iris.target它包含了150个样本,…...
ElasticSearch第4篇(亿级中文数据量 ElasticSearch与Sphinx建索引速度、查询速度、并发性能、实测对比)
经过实测:1.09亿的数据量进行中文检索。ElasticSearch单机的检索性能在0.005~5.6秒之间,此检索速度可满足95%的业务场景(注意:每条ES文档平均65个汉字,数据源取自几千本小说,大部分文档在15~300个汉字之间&…...
过期知识:thinkphp5 使用migrate给现有的数据表新增表字段
个人开发网站记录, 这个文章主要是个以后健忘的我看的. 我在搞我的画笔审核 , 发现数据表的画笔数据在审核驳回的时候还是软删除好一些, 免得用户找不到之前上传的画笔数据, 后期也可以考虑重新显示给用户,让用户可以修改画笔信息重新提交审核. 这个时候想起了…...
前端和Postman调用同一个接口,拿到的数据不一样
1、表现 联调一个List接口,Postman自测得到的ID和前端调用得到的ID,结果不一样。前者结果: 后者结果: 同一份代码、同一个数据库,出现这种错误,大概率是类型转换时出问题了,但检查代码发现&…...
1000W长连接,如何建立和维护?千万用户IM 架构设计
1000W长连接,如何建立和维护?千万用户IM 架构设计 在40岁老架构师 尼恩的读者交流群(50)中,最近有小伙伴拿到了一线互联网企业如得物、阿里、滴滴、极兔、有赞、希音、百度、网易、美团的面试资格,遇到很多很重要的架构类/设计类…...
vulhub:Apache解析漏洞CVE-2017-15715
Apache HTTPD是一款HTTP服务器,它可以通过mod_php来运行PHP网页。其2.4.0~2.4.29版本中存在一个换行解析漏洞,在解析PHP时,1.php\x0A将被按照PHP后缀进行解析,导致绕过一些服务器的安全策略。 #启动靶机 cd /Vulnhub/vulhub-mast…...
开发中可能会面临的真实问题及处理流程
接口返回数据不符合预期 问题描述:接口返回的数据结构或字段名称与前端预期不符,导致页面展示错误。 处理流程: 检查接口文档:确保前后端约定的接口文档是最新的,并且描述一致。 前后端沟通:与后端开发人员…...
个性化你的生产力工具:待办事项App定制指南
国内外主流的10款待办事项软件对比:PingCode、Worktile、滴答清单、番茄ToDo、Teambition、Todoist、Microsoft To Do、TickTick、Any.do、Trello。 在寻找合适的待办事项软件时,你是否感到选择众多、难以决断?一个好的待办事项工具可以大大提…...
本地部署持续集成工具Jenkins并配置公网地址实现远程自动化构建
文章目录 前言1. 安装Jenkins2. 局域网访问Jenkins3. 安装 cpolar内网穿透软件4. 配置Jenkins公网访问地址5. 公网远程访问Jenkins6. 固定公网地址 前言 本文主要介绍如何在Linux CentOS 7中安装Jenkins并结合cpolar内网穿透工具实现远程访问管理本地部署的Jenkins服务. Jenk…...
【数据结构】了解哈希表,解决哈希冲突,用Java模拟实现哈希桶
哈希表的概念 哈希表(Hash Table)是一种高效的数据结构,用于实现快速的数据存储和检索。它通过将数据映射到一个数组的索引位置,从而能够在平均情况下实现O(1)的时间复杂度进行查找、插入和删除操作。 哈希表的基本概念包括以下…...
qt5 ui转python或C++文件
firstMainWin.ui转换成.py文件,输入以下命令即可 pyuic5 -o firstMainWin.py firstMainwin. ui python -m PyQt5.uic.pyuic Img_ui.ui -o Img_ui.py firstMainWin.ui转换成c文件,输入以下命令即可 uic firstMainWin.ui -o hello.h ##用python转 新建…...
scp命令详解
scp(secure copy)是一个基于 SSH 的命令行工具,用于在不同计算机之间安全地复制文件和目录。scp 提供了在本地和远程主机之间传输文件的简单方法,并且支持加密和认证,确保文件传输的安全性。 基本用法 从本地复制到远…...
算法小白的进阶之路(力扣1~5)
💝💝💝欢迎来到我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。 非常期待和您一起在这个小…...
昇思25天学习打卡营第22天|MindSporeK基于Diffusion扩散模型学习- Diffusion与其他生成模型
Diffusion扩散模型 本文基于Hugging Face:The Annotated Diffusion Model一文翻译迁移而来,同时参考了由浅入深了解Diffusion Model一文。 本教程在Jupyter Notebook上成功运行。如您下载本文档为Python文件,执行Python文件时,请…...
【C++版本】protobuf与gRPC
文章目录 一、Protobuf二、安装以及使用protoc三、gRPC1.Q&A2.学习版rpc3.gRPC压缩算法 参考 一、Protobuf Google Protocol Buffers(protobuf)是一种语言中立、平台中立的序列化协议,旨在高效地将结构化数据进行序列化和反序列化。它主要…...
要抓住国际白银现货行情 以下这几点需要注意
国际白银现货行情最近表现不甚稳定,在七月上旬出现了比较强势的上涨,但随后出现强势的下跌,跌破了30关口。如果我们要抓住国际白银现货行情,那么以下这几点我们就需要注意。 一,建立交易计划,并且按计划执行…...
【计算机毕业设计】720图书馆智能选座系统
🙊作者简介:拥有多年开发工作经验,分享技术代码帮助学生学习,独立完成自己的项目或者毕业设计。 代码可以私聊博主获取。🌹赠送计算机毕业设计600个选题excel文件,帮助大学选题。赠送开题报告模板ÿ…...
java面向对象重点总结
文章目录 java面向对象重点总结类与实例构造方法方法重载属性与修饰符封装继承多态重构抽象类接口抽象类和接口的区别:集合泛型 java面向对象重点总结 对象是一个自包含的实体,用一组可识别的特性和行为来标识。 面向对象编程,英文叫Object…...
1321:【例6.3】删数问题(Noip1994)
大模拟 #include<bits/stdc.h> using namespace std; int s,len; char c[245]; int main(){cin>>c>>s;//读入高精度数和待删除的数lenstrlen(c);//1、寻找第一个下降序列的转折点,删去//2、如果找不到,意味着全部递增,删…...
使用 Python 中的 ELSER 进行Serverless 语义搜索:探索夏季奥运会历史
作者:来自 Elastic Essodjolo Kahanam 本博客介绍如何使用语义搜索以自然语言表达形式从 Elasticsearch 索引中获取信息。我们将创建一个无服务器 Elasticsearch 项目,将之前的奥运会数据集加载到索引中,使用推理处理器和 ELSER 模型生成推理…...
突破不可导策略的训练难题:零阶优化与强化学习的深度嵌合
强化学习(Reinforcement Learning, RL)是工业领域智能控制的重要方法。它的基本原理是将最优控制问题建模为马尔可夫决策过程,然后使用强化学习的Actor-Critic机制(中文译作“知行互动”机制),逐步迭代求解…...
质量体系的重要
质量体系是为确保产品、服务或过程质量满足规定要求,由相互关联的要素构成的有机整体。其核心内容可归纳为以下五个方面: 🏛️ 一、组织架构与职责 质量体系明确组织内各部门、岗位的职责与权限,形成层级清晰的管理网络…...
屋顶变身“发电站” ,中天合创屋面分布式光伏发电项目顺利并网!
5月28日,中天合创屋面分布式光伏发电项目顺利并网发电,该项目位于内蒙古自治区鄂尔多斯市乌审旗,项目利用中天合创聚乙烯、聚丙烯仓库屋面作为场地建设光伏电站,总装机容量为9.96MWp。 项目投运后,每年可节约标煤3670…...
WordPress插件:AI多语言写作与智能配图、免费AI模型、SEO文章生成
厌倦手动写WordPress文章?AI自动生成,效率提升10倍! 支持多语言、自动配图、定时发布,让内容创作更轻松! AI内容生成 → 不想每天写文章?AI一键生成高质量内容!多语言支持 → 跨境电商必备&am…...
select、poll、epoll 与 Reactor 模式
在高并发网络编程领域,高效处理大量连接和 I/O 事件是系统性能的关键。select、poll、epoll 作为 I/O 多路复用技术的代表,以及基于它们实现的 Reactor 模式,为开发者提供了强大的工具。本文将深入探讨这些技术的底层原理、优缺点。 一、I…...
Spring AI与Spring Modulith核心技术解析
Spring AI核心架构解析 Spring AI(https://spring.io/projects/spring-ai)作为Spring生态中的AI集成框架,其核心设计理念是通过模块化架构降低AI应用的开发复杂度。与Python生态中的LangChain/LlamaIndex等工具类似,但特别为多语…...
Java线上CPU飙高问题排查全指南
一、引言 在Java应用的线上运行环境中,CPU飙高是一个常见且棘手的性能问题。当系统出现CPU飙高时,通常会导致应用响应缓慢,甚至服务不可用,严重影响用户体验和业务运行。因此,掌握一套科学有效的CPU飙高问题排查方法&…...
Pinocchio 库详解及其在足式机器人上的应用
Pinocchio 库详解及其在足式机器人上的应用 Pinocchio (Pinocchio is not only a nose) 是一个开源的 C 库,专门用于快速计算机器人模型的正向运动学、逆向运动学、雅可比矩阵、动力学和动力学导数。它主要关注效率和准确性,并提供了一个通用的框架&…...
Aspose.PDF 限制绕过方案:Java 字节码技术实战分享(仅供学习)
Aspose.PDF 限制绕过方案:Java 字节码技术实战分享(仅供学习) 一、Aspose.PDF 简介二、说明(⚠️仅供学习与研究使用)三、技术流程总览四、准备工作1. 下载 Jar 包2. Maven 项目依赖配置 五、字节码修改实现代码&#…...
嵌入式学习笔记DAY33(网络编程——TCP)
一、网络架构 C/S (client/server 客户端/服务器):由客户端和服务器端两个部分组成。客户端通常是用户使用的应用程序,负责提供用户界面和交互逻辑 ,接收用户输入,向服务器发送请求,并展示服务…...
