一层5x1神经网络绘制训练100轮后权重变化的图像
要完成这个任务,我们可以使用Python中的PyTorch库来建立一个简单的神经网络,网络结构只有一个输入层和一个输出层,输入层有5个节点,输出层有1个节点。训练过程中,我们将记录权重的变化,并在训练100轮后绘制出权重变化的图像。以下是步骤和代码的详细解释:
- 构建网络:网络由一个全连接层组成,没有激活函数,因为我们只关注权重的变化。
- 数据准备:随机生成一些输入数据和目标数据用于训练。
- 训练网络:使用均方误差损失和随机梯度下降优化器。
- 记录权重:在每轮训练后记录权重。
- 绘制权重变化图:训练完成后,使用matplotlib绘制权重的变化。
这张图展示了一个简单神经网络中5个权重在100轮训练过程中的变化。每条线代表一个权重值如何随着训练轮次的增加而变化。你可以看到,权重随着训练过程呈现不同程度的变化,这反映了模型在尝试适应数据的过程中权重的更新情况。
在这段代码中,weights_history[:, 0, i]
用于从存储的权重历史记录中提取特定的权重值,以便绘制。下面是这个表达式的详细分析:
-
weights_history
是一个记录了每一训练轮次后模型权重的列表,该列表在每次迭代时被转换为一个PyTorch张量。这个张量的形状是[100, 1, 5]
:- 第一个维度(100)代表训练轮次的数量。
- 第二个维度(1)代表输出层的节点数,这里是1,因为我们的模型是从5个输入到1个输出的线性层。
- 第三个维度(5)代表输入层的节点数,也就是权重的数量,因为我们的线性层有5个输入。
-
weights_history[:, 0, i]
的分解::
选择weights_history
张量中所有的100个训练轮次。0
选择输出层中第一个(也是唯一一个)节点的权重。i
这是一个从0到4变化的索引,用于选择5个输入中的一个特定权重。
因此,当你使用 weights_history[:, 0, i]
,它实际上在每一训练轮次中选取一个特定的输入权重,并跟踪这个权重是如何随着时间变化的。在上面的代码中,这种方式被用来绘制每个输入对应权重随训练轮次变化的图形,展示了每个权重如何随着模型训练进行而更新。
import torch
import torch.nn as nn
import matplotlib.pyplot as plt
import numpy as np# 定义一个简单的线性模型
class SimpleLinearModel(nn.Module):def __init__(self):super(SimpleLinearModel, self).__init__()self.linear = nn.Linear(5, 1) # 5个输入节点,1个输出节点def forward(self, x):return self.linear(x)# 生成一些随机数据
inputs = torch.randn(100, 5) # 100个样本,每个样本5个特征
targets = torch.randn(100, 1) # 100个目标值 # 初始化模型
model = SimpleLinearModel()# 损失函数和优化器
criterion = nn.MSELoss()
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)# 用于记录权重的列表
weights_history = []# 训练模型
for epoch in range(100): # 训练100轮# 前向传播outputs = model(inputs)loss = criterion(outputs, targets)# 反向传播和优化optimizer.zero_grad()loss.backward()optimizer.step()# 记录权重weights_history.append(model.linear.weight.data.numpy().copy())# 转换为numpy数组
weights_history = np.array(weights_history)# 创建subplot
fig, axs = plt.subplots(5, 1, figsize=(10, 15))
for i in range(5): # 对于5个输入特征的每一个权重绘图axs[i].plot(weights_history[:, 0, i], label=f'Weight {i+1}')axs[i].set_title(f'Weight {i+1} Changes Over 100 Epochs')axs[i].set_xlabel('Epoch')axs[i].set_ylabel('Weight Value')axs[i].legend()plt.tight_layout()
plt.savefig("test")
上述代码实现了一个简单的神经网络训练,并绘制了每个输入特征的权重变化。以下是代码的详细步骤分析:
-
导入库:
- 导入了
torch
和torch.nn
用于神经网络的构建和训练。 - 导入
matplotlib.pyplot
用于绘制图像。
- 导入了
-
定义模型:
- 定义了一个简单的线性模型
SimpleLinearModel
,包含一个全连接层linear
,输入5个特征输出1个值。
- 定义了一个简单的线性模型
-
初始化模型、损失函数和优化器:
- 实例化了模型
model
。 - 使用均方误差损失函数
criterion
,适合回归问题。 - 使用随机梯度下降优化器
optimizer
,学习率设置为0.01。
- 实例化了模型
-
准备数据:
- 生成了随机输入数据
inputs
和目标数据targets
,分别有100个样本,输入有5个特征,输出有1个目标值。
- 生成了随机输入数据
-
训练过程:
- 创建一个空列表
weights_history
用于记录每轮训练后的权重。 - 进行100轮训练,在每轮中:
- 计算模型的输出
outputs
。 - 计算损失
loss
。 - 清空梯度,进行反向传播,更新权重。
- 记录当前的权重,保存到
weights_history
中。
- 计算模型的输出
- 创建一个空列表
-
数据转换和绘图:
- 将
weights_history
转换为numpy
数组,以便于处理。 - 使用
plt.subplots
创建5个子图,每个子图显示一个输入特征的权重变化。 - 遍历每个输入特征的权重数据,绘制在相应的子图上:
axs[i].plot(...)
绘制第i
个输入特征的权重变化曲线。- 设置子图的标题、坐标轴标签和图例。
- 使用
plt.tight_layout()
使子图布局紧凑整齐。 - 显示绘制好的图像。
- 将
每个子图显示了对应输入特征的权重在100轮训练中的变化情况。这种细分展示方法有助于观察每个权重如何随着训练过程逐步调整和收敛。
相关文章:
一层5x1神经网络绘制训练100轮后权重变化的图像
要完成这个任务,我们可以使用Python中的PyTorch库来建立一个简单的神经网络,网络结构只有一个输入层和一个输出层,输入层有5个节点,输出层有1个节点。训练过程中,我们将记录权重的变化,并在训练100轮后绘制…...
Project #0 - C++ Primer
知识点 1.pragma once C和C中的一个非标准但广泛支持的预处理指令,用于使当前源文件在单次编译中只被包含一次。 #pragma once class F {}; // 不管被导入多少次,只处理他一次2.explicit C中的一个关键字,它用来修饰只有一个参数的类构造函…...
git提交commit信息规范,fix,feat
可以确保团体合作中,从你的提交记录可以识别出你的动作 feat:新功能(featuer)fix: 修补bugdocs: 文档(documentation)style:格式(修改样式,不影响代码运行的…...
服务器 Linux 的文件系统初探
好久没更新文章了,最近心血来潮,重新开始知识的累计,做出知识的沉淀~ 万事万物皆文件 文件系统:操作系统如何管理文件,内部定义了一些规则或者定义所以在 Linux 中所有的东西都是以文件的方式进行操作在 Linux 中&am…...
关于Unity转微信小程序的流程记录
1.准备工作 1.unity微信小程序转换工具,minigame插件,导入后工具栏出现“微信小游戏" 2.微信开发者工具稳定版 3.MP微信公众平台申请微信小游戏,获得游戏appid 4.unity转webgl开发平台,Player Setting->Other Setting…...
AI入门指南:什么是人工智能、机器学习、神经网络、深度学习?
文章目录 一、前言二、人工智能(AI)是什么?起源概念人工智能分类人工智能应用 三、机器学习是什么?概念机器学习常见算法机器学习分类机器学习与人工智能的关系 四、神经网络是什么?概念神经网络组成部分神经网络模型神经网络和机器学习的关系…...
网络安全中的IOC是指的什么?
网络安全中的IOC(Indicators of Compromise)指的是威胁指标,是网络安全领域中的一个重要概念。它指的是可以用来识别计算机系统、网络或应用程序中已经受到攻击或遭受威胁的特定特征。这些特征可以是恶意文件、恶意域名、已知攻击工具等&…...
掌握AJAX技术:从基础到实战
文章目录 **引言****1. 什么是AJAX?****2. AJAX的工作原理**AJAX 示例使用 Fetch API 实现 AJAX **3. 如何在项目中使用AJAX****4. 处理AJAX请求的常见问题****5. AJAX与JSON的结合****6. 使用AJAX框架和库****7. 实战:创建一个动态表单****8. AJAX中的事…...
Unity UGUI 实战学习笔记(6)
仅作学习,不做任何商业用途 不是源码,不是源码! 是我通过"照虎画猫"写的,可能有些小修改 不提供素材,所以应该不算是盗版资源,侵权删 因为注册和登录面板的逻辑与数据存储方面已经相对完善 服务器面板逻辑…...
iOS面试之属性关键字(二):常见面试题
Q:ARC下,不显式指定任何属性关键字时,默认的关键字都有哪些? 对应基本数据类型默认关键字是:atomic,readwrite,assign 对于普通的 Objective-C 对象:atomic,readwrite,strong Q:atomic 修饰的属性是怎么样保存线程安全的&#x…...
java开发设计模式详解
目录 一、概述 1. 创建型模式(5种) 2. 结构型模式(7种) 3. 行为型模式(11种) 二、代码示例说明 1.单例模式(Singleton) 2.工厂方法模式(Factory Method) 3.抽象工厂模式(Abstract Factory) 4.建造者模式(Builder) 5.原型模式 (Prototype) 6.适…...
windows中node版本的切换(nvm管理工具),解决项目兼容问题 node版本管理、国内npm源镜像切换(保姆级教程,值得收藏)
前言 在工作中,我们可能同时在进行2个或者多个不同的项目开发,每个项目的需求不同,进而不同项目必须依赖不同版本的NodeJS运行环境,这种情况下,对于维护多个版本的node将会是一件非常麻烦的事情,nvm就是为…...
测试面试宝典(四十四)—— APP测试和web测试有什么区别?
一、系统架构和运行环境 APP 测试需要考虑不同的操作系统(如 iOS、Android 等)、设备型号和屏幕尺寸,以及各种网络连接状态(如 2G、3G、4G、WiFi 等)。而 Web 测试主要针对不同的浏览器(如 Chrome、Firefo…...
力扣高频SQL 50题(基础版)第三十七题
文章目录 力扣高频SQL 50题(基础版)第三十七题176.第二高的薪水题目说明实现过程准备数据实现方式结果截图总结 力扣高频SQL 50题(基础版)第三十七题 176.第二高的薪水 题目说明 Employee 表: ----------------- …...
web基础之CSS
web基础之CSS 文章目录 web基础之CSS一、CSS简介二、基本用法2、CSS应用方式2.1 行内样式2.2内部样式2.3外部样式 三、选择器1、标签选择器2、类选择器3、ID选择器4、选择器的优先级 四、常见的CSS属性1、字体属性2、文本属性3、背景属性4、表格属性5、盒子模型的属性6、定位 总…...
全球轻型卡车胎市场规划预测:2030年市场规模将接近1153亿元,未来六年CAGR为2.0%
一、引言 随着全球物流行业的持续发展,轻型卡车胎作为物流运输的关键消耗品,其市场重要性日益凸显。本文旨在探索轻型卡车胎行业的发展趋势、潜在商机及其未来展望。 二、市场趋势 全球轻型卡车胎市场的增长主要受全球物流行业增加、消费者对轮胎性能要…...
8.2 数据结构王道复习 2.3.3 2.3.7选择题错题review
王道中这章主讲了线性表的定义、基本操作、顺序表示、链式表示。下方内容主分了文字部分和代码部分,便于记忆和整理。 在901中这章的要求集中在链表的基础操作中,应用题大概会出问答题。 【当前每一小节的应用题待做,先把选择题过完ÿ…...
【DL】神经网络与机器学习基础知识介绍(二)【附程序】
原文:https://mengwoods.github.io/post/dl/009-dl-fundamental-2/ 文章目录 激活函数卷积神经网络超参数其他程序 激活函数 激活函数的目的是在模型中引入非线性,使网络能够学习和表示数据中的复杂模式。列出常见的激活函数。 线性函数: y…...
6万字嵌入式最全八股文面试题大全及参考答案(持续更新)
目录 冒泡排序算法的平均时间复杂度和最坏时间复杂度分别是多少?在什么情况下使用冒泡排序较为合适? 选择排序算法是稳定的排序算法吗?为什么? 插入排序在近乎有序的数组中表现如何?为什么? 快速排序的基本思想是什么?它在最坏情况下的时间复杂度是多少? 归并排序…...
iceberg 用户文档(持续更新)
iceberg 用户文档 表 Schema 变更查看表的元数据信息表参数变更 表 Schema 变更 Iceberg 支持使用 Alter table … alter column 语法对 Schema 进行变更,示例如下 -- spark sql -- 更改字段类型 ALTER TABLE prod.db.sample ALTER COLUMN measurement TYPE doubl…...
基于YOLOv8的船舶检测系统
基于YOLOv8的船舶检测系统 (价格85) 包含 【散货船,集装箱船,渔船,杂货船,矿砂船,客船】 6个类 通过PYQT构建UI界面,包含图片检测,视频检测,摄像头实时检测。 (该…...
使用腾讯云域名解析实现网站重定向
前言 最近,在CSDN平台上我写了一系列博客,希望能与同学分享一些技术心得。然而,每当需要向他人推荐我的博客时,那串复杂且缺乏规律的CSDN博客首页域名总让我感到不便。这让我开始思考,如果能将这一域名替换为一个既个…...
为什么相比直接使用new和std::shared_ptr构造函数,make_shared在内存分配和管理方面更为高效。
使用std::make_shared相比于直接使用new和std::shared_ptr构造函数在内存分配和管理方面更为高效,主要原因如下: 内存分配效率 std::make_shared通过一次内存分配来同时分配控制块(用于引用计数等)和对象的内存。这种方式减少了…...
7-Python数据类型——列表和元组的详解(增删改查、索引、切片、步长、循环)
一、列表 1.1 列表 list 有序且可变的容器,可以存放多个不同类型的元素 列表就是专门用来记录多个同种属性的值 列表:存储同一个类别的数据,方便操作 字符串,不可变:即:创建好之后内部就无法修改【内置…...
大数据-61 Kafka 高级特性 消息消费02-主题与分区 自定义反序列化 拦截器 位移提交 位移管理 重平衡
点一下关注吧!!!非常感谢!!持续更新!!! 目前已经更新到了: Hadoop(已更完)HDFS(已更完)MapReduce(已更完&am…...
Google Gemma2 2B:语言模型的“小时代”到来?
北京时间8月1日凌晨(当地时间7月31日下午),Google发布了其Gemma系列开源语言模型的更新,在AI领域引发了巨大的震动。Google Developer的官方博客宣布,与6月发布的27B和9B参数版本相比,新的2B参数模型在保持…...
三线程顺序打印1-100
三线程顺序打印1-100 题目 三个线程顺序打印1-100; 解题 基本思路 首先需要创建三个线程, 确定使用线程1打印 num % 3 1 的数, 线程2打印 num % 3 2 的数, 线程3打印 num % 3 0 的数;使用 synchronized 同步锁让每次只有一个线程进行打印, 每个线程打印前先判断当前数是…...
中央处理器CPU
中央处理器CPU cpu的组成(从功能方面来看)cpu的执行过程★.取指令阶段★.解码阶段★.执行阶段 重点: 1.cpu的组成 2.cpu怎么执行程序(命令) cpu的组成(从功能方面来看) 寄存器:用来临…...
用Python实现AI人脸识别
实现AI人脸识别通常涉及到使用深度学习库,如TensorFlow或PyTorch,配合预训练的人脸识别模型。以下是一个使用Python和TensorFlow框架中的tensorflow_hub模块来加载和使用一个预训练的人脸识别模型的简单示例。 步骤 1: 安装必要的库 首先,你…...
MSPM0G3507_2024电赛自动行驶小车(H题)_问题与感悟
这次电赛题目选的简单了,还规定不能使用到摄像头,这让我之前学习的Opencv 4与树莓派无用武之地了,但我当时对于三子棋题目饶有兴趣,但架不住队友想稳奖,只能选择这个H题了...... 之后我还想抽空将这个E题三子棋题目做…...
怎么做游戏网站/免费注册网站有哪些
C语言系列之 内存操作—5459人已学习 课程介绍 尹成老师带你步入 C 语言的殿堂,讲课生动风趣、深入浅出,全套视频内容充实,整个教程以 C 语言为核心,完整精彩的演练了数据结构、算法、设计模式、数据库、大数据高并发检索、文件…...
网站设计弹窗/百度怎么推广产品
L1-033 出生年(15 分) 以上是新浪微博中一奇葩贴:“我出生于1988年,直到25岁才遇到4个数字都不相同的年份。”也就是说,直到2013年才达到“4个数字都不相同”的要求。本题请你根据要求,自动填充“我出生于y…...
快速建站属于saas吗/app推广拉新平台
概述 线段树就是用一棵二叉树维护某一区间内的某一值(最值,和,乘积......),主要有区间查询和区间修改两种操作,区间修改又有自上而下修改和自下而上修改两种,本人更习惯于自上而下修改。 下面是百度百科对线…...
如何用模板做网站/google下载安卓版
摘要:下文讲述MySQL数据库中系统函数ORD(str)的功能简介说明,如下所示;ORD函数功能说明:如果字符串最左边是一个多字节字符,则返回第一个字符所对应的ASCII码,此时ORD函数同ASCII函数具有相同的功能。ORD函数举例说明:mysql> select ord(m…...
wordpress伪原创设置/店铺推广引流的方法
7-2 符号配对 (20 分) 请编写程序检查C语言源程序中下列符号是否配对:/与/、(与)、[与]、{与}。 输入格式: 输入为一个C语言源程序。当读到某一行中只有一个句点.和一个回车的时候,标志着输入结束。程序中需要检查配对的符号不超过100个。 输出格式: 首…...
浚县网站建设/智能营销系统开发
优化前的版本: /*** PHP计算两个时间段是否有交集(边界重叠不算)** param string $beginTime1 开始时间1* param string $endTime1 结束时间1* param string $beginTime2 开始时间2* param string $endTime2 结束时间2* return bool* author …...