当前位置: 首页 > news >正文

【算法】浅析深度优先搜索算法

深度优先搜索算法:深入探索,穷尽可能

1. 引言

在计算机科学中,深度优先搜索(Depth-First Search,简称DFS)是一种用于遍历或搜索树或图的算法。这种算法会沿着一个分支走到底,直到这个分支结束,然后回溯到上一个分叉点,继续探索下一个分支。本文将介绍深度优先搜索算法的原理、实现方法及其在实际应用中的重要性,并通过代码示例和图示帮助大家更好地理解。

2. 深度优先搜索算法简介

2.1 定义

深度优先搜索是一种优先遍历子节点,直到达到某个条件后回溯的算法。

2.2 特点

(1)递归:通过递归函数实现节点间的遍历。
(2)回溯:当达到某个节点没有子节点时,返回上一个节点继续寻找其他路径。
(3)标记:通常需要对访问过的节点进行标记,以避免重复访问。

3. 深度优先搜索算法原理

深度优先搜索的核心思想是沿着一个路径深入到不能再深入为止,然后回溯到上一个分叉点,继续探索下一条路径。

3.1 示例:图的遍历

图的深度优先搜索是一种经典的DFS应用,其基本思想是从一个顶点开始,探索尽可能深的分支,当该分支结束,回溯到上一个顶点,继续探索其他分支。

3.2 代码示例(Python)

def dfs(graph, node, visited):if node not in visited:print(node)visited.add(node)for neighbour in graph[node]:dfs(graph, neighbour, visited)
graph = {'A': ['B', 'C'],'B': ['D', 'E'],'C': ['F'],'D': [],'E': ['F'],'F': []
}
visited = set()
dfs(graph, 'A', visited)

输出结果:A B D E C F

4. 图示理解

以下通过图示来帮助大家理解深度优先搜索算法。

4.1 图的遍历

假设我们有以下无向图,我们将使用DFS进行遍历:

		  A/ \B   C|   |D   F\ /E
4.1.1 遍历步骤
  • 从顶点A开始,访问A。
  • 探索A的邻接点,访问B。
  • B有邻接点D和E,首先访问D。
  • D没有未访问的邻接点,回溯到B,访问E。
  • E访问了F,F没有未访问的邻接点,回溯到E,再回溯到B。
  • B的邻接点已全部访问,回溯到A。
  • A的下一个邻接点是C,访问C。
  • C的邻接点F已访问,回溯到C,再回溯到A。
  • 所有顶点已访问,遍历结束。

4.2 遍历顺序

遍历顺序为:A -> B -> D -> E -> F -> C

5. 深度优先搜索算法的使用

5.1 适用场景

深度优先搜索算法适用于以下类型的问题:
(1)需要遍历树或图的全部顶点。
(2)需要找到从起点到终点的路径。
(3)需要检测图中的环或连通性。

5.2 常见应用

  • 拓扑排序:一种对有向无环图进行排序的算法。
  • 路径搜索:在图中寻找两个顶点之间的路径。
  • 棋盘游戏:如国际象棋、围棋等,探索所有可能的走法。
  • 寻找连通分量:在无向图中找到所有连通的子图。

5.3 代码示例:路径搜索

以下代码示例展示了如何使用DFS在图中寻找路径。

def dfs_path(graph, start, end, path, visited):path.append(start)if start == end:return pathvisited.add(start)for neighbour in graph[start]:if neighbour not in visited:new_path = dfs_path(graph, neighbour, end, path, visited)if new_path:return new_pathpath.pop()return None
graph = {'A': ['B', 'C'],'B': ['D', 'E'],'C': ['F'],'D': [],'E': ['F'],'F': []
}
visited = set()
print("路径:", dfs_path(graph, 'A', 'F', [], visited))

输出结果:路径:[‘A’,‘B’, ‘D’, ‘E’, ‘F’]

6. 深度优先搜索算法的意义

  1. 探索所有可能:DFS能够探索所有可能的路径,这对于解决某些类型的问题(如迷宫问题、棋盘游戏等)非常有用。
  2. 检测连通性:在图论中,DFS可以用来检测图的连通性,包括找出所有的连通分量。
  3. 简化问题:通过递归的方式,DFS可以将复杂的问题简化为更小的子问题,使得问题更容易处理。
  4. 高效的空间利用:DFS不需要存储所有可能的节点组合,因此相比宽度优先搜索(BFS),它在空间上更加高效。

7. 总结

深度优先搜索算法作为一种强大的搜索策略,在解决树和图相关问题中具有广泛的应用。通过本文的介绍,相信大家对DFS的原理、实现和应用有了更深入的认识。在实际问题求解过程中,我们可以根据问题的特点,合理选择和运用DFS,以有效地解决问题。

8. 扩展阅读

  • 宽度优先搜索(BFS):与DFS不同,BFS优先探索最近的节点,常用于找到最短路径。
  • 回溯算法:一种通过尝试所有可能的组合来找到问题解的算法,DFS常常与回溯算法结合使用。
  • 分支限界法:一种在解决问题时,通过限界函数来剪枝,避免不必要的搜索的算法。
  • 动态规划:一种在解决多阶段决策问题时,通过保存子问题的解来避免重复计算的算法。
    通过了解这些算法,可以更好地理解各种算法之间的联系和区别,并在实际问题中选择最适合的算法。

相关文章:

【算法】浅析深度优先搜索算法

深度优先搜索算法:深入探索,穷尽可能 1. 引言 在计算机科学中,深度优先搜索(Depth-First Search,简称DFS)是一种用于遍历或搜索树或图的算法。这种算法会沿着一个分支走到底,直到这个分支结束…...

鸿蒙系统开发【ASN.1密文转换】安全

ASN.1密文转换 介绍 本示例对使用kit.CryptoArchitectureKit加密后的密文格式进行转换。kit.CryptoArchitectureKit加密后的密文格式默认为以base64显示的ASN.1格式问题,通过对密文进行base64变换后得到字符数组,以16进制数字显示,再此基础…...

【期末复习】软件质量保证与测试

考试内容 a卷 前三个部分(就业前景、岗位、发展前景(第一部分最后一个知识点),第四部分缺陷管理不考) 单选 10*2 判断 12*1 简单3*10 四个小题 (7个 pta部分涵盖+ppt) 设计 10+18 简答题(PTA简答题+PPT) 背完80分以上基本没问题 一、什么是软件。 软件是计算…...

CTFHub——XSS——反射型

1、反射型: 发现为表单式,猜测哪个可能存在注入漏洞,分别做测试注入发现name框存在xss漏洞 输入发现有回显但不是对方cookie,参考wp发现要用xss线上平台 将xss平台测试语句注入,将得到的url编码地址填入url框&#xf…...

docker 部署 libreoffice

创建 jdk 镜像 1、创建 Dockfile 文件 FROM centos:7 ADD jdk-8u212-linux-x64.tar.gz /usr/local RUN mv /usr/local/jdk1.8.0_212 /usr/local/jdk ENV JAVA_HOME=/usr/local/jdk ENV JRE_HOME=$JAVA_HOME/jre ENV CLASSPATH=$JAVA_HOME/lib:$JRE_HOME/lib:$CLASSPATH ENV P…...

预测各种开发语言的市场占比

预测各种开发语言的市场占比是一个复杂且动态的任务,因为它受到多种因素的影响,包括市场需求、技术趋势、项目类型、开发团队的经验和偏好等。然而,我可以根据当前的技术趋势、编程语言排行榜以及市场需求情况,给出一个大致的预测…...

mybatisplus 通用字段自动赋值与更新

1、数据库级别的自动赋值与更新 比如自动更新时间和插入时间 default current_timestamp 插入的时候获取当前 default current_timestamp on update current_timestamp 修改的时候更新时间 无法用数据库更新的通用字段 借助 mybatisplus 的 metaobjecthandler 实现metaob…...

图像生成中图像质量评估指标—FID介绍

文章目录 1. 背景介绍2. 实际应用3. 总结和讨论 1. 背景介绍 Frchet Inception Distance(\textbf{FID})是一种衡量生成模型性能的指标,它基于Inception网络提取的特征来计算模型生成的图像与真实图像集合之间的距离。 FID利用了Inception模…...

uniapp全局分享功能实现方法(依赖小程序右上角的分享按钮)

1、uniapp开发小程序时默认是关闭分享功能的。点击右上角三个点可查看,效果图如下: 2、在utils文件夹下新建share.js文件,名字任起。(使用的是全局分享,因为一个一个页面的去分享太麻烦且没必要。) export…...

Redis中BigKey的判定查找建议

判定依据 key本身的数据量过大:string类型的key它的值为5MBkey中的成员数量过多:一个zset类型的key成员数量为10000个key中的成员数据量过大:一个hash类型的key他的成员只有1000个但是这些value总大小超过100MB查看内存命令 127.0.0.1:6379> hset k1 name 123 age 123 sex…...

Swift-语法基础

一、声明 变量声明 以关键字 var 开头的声明引入变量,该变量在程序执行期间可以具有不同的值。 var str: String "hello" str "hello, world" 常量声明 以关键字 let 开头的声明引入只读常量,该常量只能被赋值一次。 let s…...

面向对象进阶:多态、内部类、常用API

目录 Java中的接口 Java中的内部类 常用API StringBuilder类 Java高级面向对象编程 在这篇博客文章中,我们将探索Java中的高级面向对象编程概念,包括接口、内部类和常用API。每个概念都将通过代码示例来演示它们的应用。 Java中的接口 什么是接口&…...

寸(英寸)、码、斤、公顷等日常中大概的换算单位你清楚吗

这些单位和概念是我们日常生活和工作中不可或缺的部分,理解它们的用途和转换关系可以让我们更有效地处理信息、进行交流和解决问题。 1、寸(英寸) 1寸(或英寸)等于0.0254米,2寸等于:20.0254&a…...

Python面试宝典第26题:最长公共子序列

题目 一个字符串的子序列是指这样一个新的字符串:它是由原字符串在不改变字符的相对顺序的情况下删除某些字符(也可以不删除任何字符)后组成的新字符串。比如:"ace" 是 "abcde" 的子序列,但 "…...

接口测试学习笔记2

一、复习和扩展: 1、金字塔测试模型 UI测试 -- 黑盒 Service 服务层--函数之间的调用 灰盒 接口测试 Unit单元层--白盒测试 趋势:逐步向下发展 测试优先、测试驱动 -- 先考虑怎么测,再考虑怎么开发 满足软件测试的可控范围 2、…...

vue3修改带小数点的价格数字:小数点的前后数字,要分别显示成不同颜色和大小!已经封装成组件了!

需求&#xff1a; 修改带小数点的价格数字&#xff1a;小数点的前后数字&#xff0c;要分别显示成不同颜色和大小&#xff01;已经封装成组件了&#xff01; 效果&#xff1a; 前面大&#xff0c;后面小 代码&#xff1a; 组件&#xff1a; <!--修改小数点前后数字不同…...

JVM(Java虚拟机) - JVM内存分配与内存管理

作者&#xff1a;逍遥Sean 简介&#xff1a;一个主修Java的Web网站\游戏服务器后端开发者 主页&#xff1a;https://blog.csdn.net/Ureliable 觉得博主文章不错的话&#xff0c;可以三连支持一下~ 如有疑问和建议&#xff0c;请私信或评论留言&#xff01; 前言 Java虚拟机&…...

Linux中vim的基本介绍和使用

善为理者&#xff0c;举其纲&#xff0c;疏其网。 vim 1、vim介绍2、命令模式详情3、底行模式详情4、困难问题5、历史存疑问题6、vim配置问题6、1、配置的原理6、2、一键式配置 1、vim介绍 如果我面想要在Linux上编写代码的话&#xff0c;我就需要vim来帮助我们编写代码。但是…...

宝塔面板上,安装rabbitmq

废话不多说&#xff0c;直接上干货&#xff01; 第一步&#xff1a;登录宝塔账号&#xff0c;在软件商店里搜索 第二步&#xff1a;点击设置 第三步&#xff1a;已经完成了&#xff0c;还看啥&#xff01;...

【Docker系列】Docker 镜像管理:删除无标签镜像的技巧

&#x1f49d;&#x1f49d;&#x1f49d;欢迎来到我的博客&#xff0c;很高兴能够在这里和您见面&#xff01;希望您在这里可以感受到一份轻松愉快的氛围&#xff0c;不仅可以获得有趣的内容和知识&#xff0c;也可以畅所欲言、分享您的想法和见解。 推荐:kwan 的首页,持续学…...

超短脉冲激光自聚焦效应

前言与目录 强激光引起自聚焦效应机理 超短脉冲激光在脆性材料内部加工时引起的自聚焦效应&#xff0c;这是一种非线性光学现象&#xff0c;主要涉及光学克尔效应和材料的非线性光学特性。 自聚焦效应可以产生局部的强光场&#xff0c;对材料产生非线性响应&#xff0c;可能…...

DeepSeek 赋能智慧能源:微电网优化调度的智能革新路径

目录 一、智慧能源微电网优化调度概述1.1 智慧能源微电网概念1.2 优化调度的重要性1.3 目前面临的挑战 二、DeepSeek 技术探秘2.1 DeepSeek 技术原理2.2 DeepSeek 独特优势2.3 DeepSeek 在 AI 领域地位 三、DeepSeek 在微电网优化调度中的应用剖析3.1 数据处理与分析3.2 预测与…...

边缘计算医疗风险自查APP开发方案

核心目标:在便携设备(智能手表/家用检测仪)部署轻量化疾病预测模型,实现低延迟、隐私安全的实时健康风险评估。 一、技术架构设计 #mermaid-svg-iuNaeeLK2YoFKfao {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg…...

2025 后端自学UNIAPP【项目实战:旅游项目】6、我的收藏页面

代码框架视图 1、先添加一个获取收藏景点的列表请求 【在文件my_api.js文件中添加】 // 引入公共的请求封装 import http from ./my_http.js// 登录接口&#xff08;适配服务端返回 Token&#xff09; export const login async (code, avatar) > {const res await http…...

Python爬虫(一):爬虫伪装

一、网站防爬机制概述 在当今互联网环境中&#xff0c;具有一定规模或盈利性质的网站几乎都实施了各种防爬措施。这些措施主要分为两大类&#xff1a; 身份验证机制&#xff1a;直接将未经授权的爬虫阻挡在外反爬技术体系&#xff1a;通过各种技术手段增加爬虫获取数据的难度…...

排序算法总结(C++)

目录 一、稳定性二、排序算法选择、冒泡、插入排序归并排序随机快速排序堆排序基数排序计数排序 三、总结 一、稳定性 排序算法的稳定性是指&#xff1a;同样大小的样本 **&#xff08;同样大小的数据&#xff09;**在排序之后不会改变原始的相对次序。 稳定性对基础类型对象…...

GruntJS-前端自动化任务运行器从入门到实战

Grunt 完全指南&#xff1a;从入门到实战 一、Grunt 是什么&#xff1f; Grunt是一个基于 Node.js 的前端自动化任务运行器&#xff0c;主要用于自动化执行项目开发中重复性高的任务&#xff0c;例如文件压缩、代码编译、语法检查、单元测试、文件合并等。通过配置简洁的任务…...

现有的 Redis 分布式锁库(如 Redisson)提供了哪些便利?

现有的 Redis 分布式锁库&#xff08;如 Redisson&#xff09;相比于开发者自己基于 Redis 命令&#xff08;如 SETNX, EXPIRE, DEL&#xff09;手动实现分布式锁&#xff0c;提供了巨大的便利性和健壮性。主要体现在以下几个方面&#xff1a; 原子性保证 (Atomicity)&#xff…...

多模态图像修复系统:基于深度学习的图片修复实现

多模态图像修复系统:基于深度学习的图片修复实现 1. 系统概述 本系统使用多模态大模型(Stable Diffusion Inpainting)实现图像修复功能,结合文本描述和图片输入,对指定区域进行内容修复。系统包含完整的数据处理、模型训练、推理部署流程。 import torch import numpy …...

django blank 与 null的区别

1.blank blank控制表单验证时是否允许字段为空 2.null null控制数据库层面是否为空 但是&#xff0c;要注意以下几点&#xff1a; Django的表单验证与null无关&#xff1a;null参数控制的是数据库层面字段是否可以为NULL&#xff0c;而blank参数控制的是Django表单验证时字…...