当前位置: 首页 > news >正文

体素相关的快速计算

“体素”通常是指在三维空间中具有固定尺寸和位置的小立方体单元。

体素的优点包括:

  • 易于处理和计算:在计算机图形学和三维建模中,体素的结构相对简单,计算和操作较为方便。
  • 能精确表示物体的内部结构:对于一些需要了解物体内部信息的应用,如医学成像、地质建模等,体素可以提供更详细和准确的内部描述。
  • 适合并行计算:因为体素之间相对独立,便于在多核或分布式计算环境中进行并行处理,提高计算效率。
  • 数据结构简单:存储和管理体素数据的结构相对简单,降低了数据处理的复杂性。

本文主要介绍在使用体素过程中的一些快速计算的方法

1. 求重心

一般情况下并不需要求体素的重心,可以用中心或随机采样来代替,但是在一些特殊的应用场景,还是需要重心的,而这个重心却很难计算,此处介绍一种快速方法。

通过cumsum函数高效计算voxel中所有Point的X,Y,Z坐标之和/平均值,为了方便理解,下面对该trick的计算过程进行简单演示

# 假设我们有一组Point,以及该组Point中每个点对应的voxel的index
points = np.array([[1, 1, 1], [2, 2, 2], [3, 3, 3], [4, 4, 4], [5, 5, 5]])  # 5x3
indexes = np.array([0, 1, 2, 2, 3])
# 现在我们希望计算属于同一个voxel中的所有点的x,y,z坐标的平均值,暴力方法是通过for循环来实现
# 下面给出如何利用cumsum函数来非常简单的实现上述功能# step1: 对点云的第0维进行累加求和
points_cumsum = points.cumsum(0)
# point_cumsum = [[1, 1, 1], [3, 3, 3], [6, 6, 6], [10, 10, 10], [15, 15, 15]]# step2: 计算每个点与其前一个点是否落在同一个voxel中
kept = np.ones(points.shape[0], dtype=bool)
kept[:-1] = (indexes[1:] != indexes[:-1])
# kept: [True, True, False, True, True]# step3: 计算并输出同一个voxel中所有Point的xyz坐标之和
points_voxel = points_cumsum[kept]
points_voxel = np.concatenate((points_voxel[:1], points_voxel[1:] - points_voxel[:-1]))
# points_voxel: [[1, 1, 1], [2, 2, 2], [7, 7, 7], [5, 5, 5]]

2. 语义投票

对体素中每个点的语义求均值是错误的方法。随机采样并不鲁棒,投票是比较好的方法,但投票的开销很大。此处介绍一个快速计算方法。

2.1. 开销大的方法

当体素较多时,该方法速度极慢

min_values = np.min(points, axis=0)
points_voxel_coordinates = np.round((points - min_values) / voxel_size).astype(int)
sample_voxel_coordinates, sampled_indices = np.unique(points_voxel_coordinates, axis=0, return_inverse=True)
sampled_points = sample_voxel_coordinates * voxel_size + voxel_size * 0.5sampled_semantics = []
for i in range(len(sample_voxel_coordinates)):print(f"Processing voxel {i}/{len(sample_voxel_coordinates)}")voxel_point_indices = np.where(sampled_indices == i)[0]voxel_semantics = semantics[voxel_point_indices]voxel_semantic = scipy.stats.mode(voxel_semantics)[0][0]sampled_semantics.append(voxel_semantic)sampled_semantics = np.array(sampled_semantics)

2.2. 内存大的方法

该方法速度快,但当语义的类别较多时,其占用的内存较大。

num_points = points.shape[0]min_values = np.min(points, axis=0)
points_voxel_coordinates = np.round((points - min_values) / voxel_size).astype(int)
_, sampled_indices, counts = np.unique(points_voxel_coordinates, axis=0, return_inverse=True, return_counts=True)arg_indices = np.argsort(sampled_indices)
sampled_indices = sampled_indices[arg_indices]
points = points[arg_indices, :]
points = points.cumsum(0)kept = np.ones(num_points, dtype=bool)
kept[:-1] = (sampled_indices[1:] != sampled_indices[:-1])
counts_3d = np.tile(counts, (3, 1)).Tpoints = points[kept]
points = np.concatenate((points[:1], points[1:] - points[:-1]))
points = (points / counts_3d).astype(np.float32)semantics = pointcloud.point.semantic.numpy().flatten()
semantic_matrix = np.zeros((num_points, num_semantics), dtype=bool)
semantic_matrix[np.arange(num_points), semantics] = 1semantic_matrix = semantic_matrix[arg_indices, :]
semantic_cols = []for i in range(num_semantics):semantic_col = np.cumsum(semantic_matrix[:, i].astype(np.uint32))semantic_col = semantic_col[kept]semantic_col = np.concatenate((semantic_col[:1], semantic_col[1:] - semantic_col[:-1])).astype(np.uint8)semantic_cols.append(semantic_col)semantic_cols = np.stack(semantic_cols, axis=1)
semantic_matrix = np.argmax(semantic_cols, axis=1).astype(np.uint8)

2.3. 两者兼顾的方法

该方法虽然速度上比上一方法略慢,但解决了内存问题

num_points = points.shape[0]min_values = np.min(points, axis=0)
points_voxel_coordinates = np.round((points - min_values) / voxel_size).astype(int)
_, sampled_indices, counts = np.unique(points_voxel_coordinates, axis=0, return_inverse=True, return_counts=True)arg_indices = np.argsort(sampled_indices)
sampled_indices = sampled_indices[arg_indices]
points = points[arg_indices, :]
points = points.cumsum(0)kept = np.ones(num_points, dtype=bool)
kept[:-1] = (sampled_indices[1:] != sampled_indices[:-1])
counts_3d = np.tile(counts, (3, 1)).Tpoints = points[kept]
points = np.concatenate((points[:1], points[1:] - points[:-1]))
points = (points / counts_3d).astype(np.float32)semantics = pointcloud.point.semantic.numpy().flatten().astype(np.uint8)
semantics = semantics[arg_indices]num_kept = np.sum(kept)
max_values = np.zeros(num_kept, dtype=np.uint64)
max_indices = np.zeros(num_kept, dtype=np.uint8)for i in range(num_semantics):semantic_col = np.where(semantics == i, 1, 0).astype(np.uint64)semantic_col = np.cumsum(semantic_col)semantic_col = semantic_col[kept]semantic_col = np.concatenate((semantic_col[:1], semantic_col[1:] - semantic_col[:-1])).astype(np.uint8)sign = semantic_col > max_valuesmax_values[sign] = semantic_col[sign]max_indices[sign] = i

相关文章:

体素相关的快速计算

“体素”通常是指在三维空间中具有固定尺寸和位置的小立方体单元。 体素的优点包括: 易于处理和计算:在计算机图形学和三维建模中,体素的结构相对简单,计算和操作较为方便。能精确表示物体的内部结构:对于一些需要了…...

Python 爬虫项目实战(二):爬取微博热搜榜

前言 网络爬虫(Web Crawler),也称为网页蜘蛛(Web Spider)或网页机器人(Web Bot),是一种按照既定规则自动浏览网络并提取信息的程序。爬虫的主要用途包括数据采集、网络索引、内容抓…...

文件解析漏洞复现

一、IIS 6.X 1.在网站目录创建文件夹名为xxx.asp/xxx.asa 文件夹,里面的任意文件都会被当作asp文件执行 创建1.asp 访问 2.ooo.asp.jpg会被当做asp文件执行 创建一个ooo.asp;.jpg 访问 二、IIS 7.X 上传1.jpg文件在网址后/.php可以成功执行 写一个1.jpg文件内容…...

git push报错 pre-receive hook declined

今天使用git提交的代码的时候,不然报错 pre-receive hook declined提交不上去,昨天还好好的。 经过检查发现,原来对应的分支被leader设置成受保护分支了,导致代码提交不上去。 然后在git管理平台取消分支保护,或者将我…...

打造个性化代码审查工具:在Perl中实现自定义审查的艺术

打造个性化代码审查工具:在Perl中实现自定义审查的艺术 代码审查是软件开发过程中的关键环节,它有助于提高代码质量和发现潜在缺陷。Perl作为一种灵活的编程语言,提供了丰富的特性,使得在Perl中实现自定义的代码审查工具成为可能…...

RabbitMq架构原理剖析及应用

文章目录 RabbitMQ 架构组件1. **Broker** (Broker Server)2. **Exchange**3. **Queue**4. **Producer** (消息生产者)5. **Consumer** (消息消费者)6. **Virtual Hosts** (虚拟主机) 工作流程内部原理1. **队列管理**2. **集群**3. **持久化与内存**4. **性能优化** 高级特性1…...

c# 对接第三方接口实现签名

官网文档要求如下: Sign算法说明 举例:假设请求参数键值对如下 appkey : test2-xx page_no : 0 end_time : 2016-08-01 13:00:00 start_time : 2016-08-01 12:00:00 page_size : 40 sid : test2 timestamp : 1470042310 第一步 对数所有请求参数按照…...

数学建模评价类模型—层次分析法(无数据情况下)

目录 前言 一、评价类问题概述 二、AHP建模流程 1、过程描述 2、层次分析法—Matlab代码 三、权重计算 1、算术平均法 2、几何平均法 3、特征值法 目录 文章目录 前言 一、评价类问题概述 二、AHP建模流程 1、过程描述 2、层次分析法—Matlab代码 三、权重计算 算术平均法 前言…...

模拟实现strcat(字符串追加)

1.我们要知道stcat的作用是什么,字符串追加。 2.我们进行模仿,我们先将arr1不断,直到“\0”,我们加在后面。 //模拟实现strcat(字符串追加) char* my_strcat(char* arr1, const char* arr2) {assert(arr1 && arr2);char ret arr1;…...

HTTP简单概述

一. HTTP HTTP(HyperText Transfer Protocol)是用于在客户端和服务器之间传输超文本数据(如HTML)的应用层协议。它是万维网的基础协议,定义了浏览器和服务器之间如何请求和传输文档。HTTP有多个版本,每个版…...

掌握PyCharm代码片段管理器:提升编码效率的秘诀

掌握PyCharm代码片段管理器:提升编码效率的秘诀 PyCharm作为业界领先的集成开发环境(IDE),提供了许多便利的功能来提升开发者的编码效率,其中之一就是代码片段管理器。代码片段管理器允许开发者保存、管理和重用代码模…...

MyBatis动态代理和映射器

目录 1、映射器简介 (1)什么是mapper动态代理? (2)动态代理的规范 (3)如何使用动态代理 (4)为什么学映射器 (5)映射器与接口 (…...

ShardingSphere中的ShardingJDBC常见分片算法的实现

文章目录 ShardingJDBC快速入门修改雪花算法和分表策略核心概念分片算法简单INLINE分片算法STANDARD标准分片算法COMPLEX_INLINE复杂分片算法CLASS_BASED自定义分片算法HINT_INLINE强制分片算法 注意事项 ShardingJDBC Git地址 快速入门 现在我存在两个数据库,并…...

SpringBoot整合Flink CDC实时同步postgresql变更数据,基于WAL日志

SpringBoot整合Flink CDC实时同步postgresql变更数据,基于WAL日志 一、前言二、技术介绍(Flink CDC)1、Flink CDC2、Postgres CDC 三、准备工作四、代码示例五、总结 一、前言 在工作中经常会遇到要实时获取数据库(postgresql、m…...

ThinkPHP事件的使用

技术说明 1.ThinkPHP版本:支持6.0、8.0 2.使用场景:用户登陆后日志记录、通知消息发送等主流程、次流程分离等场景 3.说明:网上很多帖子说的不明不白的,建议大家自己手动尝试总结一下 4.事件手动绑定的时候,一定要…...

【Nuxt】服务端渲染 SSR

SSR 概述 服务器端渲染全称是:Server Side Render,在服务器端渲染页面,并将渲染好HTML返回给浏览器呈现。 SSR应用的页面是在服务端渲染的,用户每请求一个SSR页面都会先在服务端进行渲染,然后将渲染好的页面&#xf…...

Spring Boot整合WebSocket

说明&#xff1a;本文介绍如何在Spirng Boot中整合WebSocket&#xff0c;WebSocket介绍&#xff0c;参考下面这篇文章&#xff1a; WebSocket 原始方式 原始方式&#xff0c;指的是使用Spring Boot自己整合的方式&#xff0c;导入的是下面这个依赖 <dependency><g…...

《LeetCode热题100》---<5.③普通数组篇五道>

本篇博客讲解LeetCode热题100道普通数组篇中的五道题 第五道&#xff1a;缺失的第一个正数&#xff08;困难&#xff09; 第五道&#xff1a;缺失的第一个正数&#xff08;困难&#xff09; 方法一&#xff1a;将数组视为哈希表 class Solution {public int firstMissingPosi…...

Cocos Creator文档学习记录

Cocos Creator文档学习记录 一、什么是Cocos Creator 官方文档链接&#xff1a;Hello World | Cocos Creator 百度百科&#xff1a;Cocos Creator_百度百科 Cocos Creator包括开发和调试、商业化 SDK 的集成、多平台发布、测试、上线这一整套工作流程&#xff0c;可多次的迭…...

插入数据优化 ---大批量数据插入建议使用load

一.insert优化 1.批量插入 2.手动提交事务 3.主键顺序插入 二.大批量插入数据 如果一次性需要插入大批量数据,使用insert语句插入性能较低,此时可以使用MySQL数据库提供的load指令进行插入。操作如下 1.客户端连接服务端时,加入参数 --local-infine mysql --local-infine…...

接口测试中缓存处理策略

在接口测试中&#xff0c;缓存处理策略是一个关键环节&#xff0c;直接影响测试结果的准确性和可靠性。合理的缓存处理策略能够确保测试环境的一致性&#xff0c;避免因缓存数据导致的测试偏差。以下是接口测试中常见的缓存处理策略及其详细说明&#xff1a; 一、缓存处理的核…...

第19节 Node.js Express 框架

Express 是一个为Node.js设计的web开发框架&#xff0c;它基于nodejs平台。 Express 简介 Express是一个简洁而灵活的node.js Web应用框架, 提供了一系列强大特性帮助你创建各种Web应用&#xff0c;和丰富的HTTP工具。 使用Express可以快速地搭建一个完整功能的网站。 Expre…...

使用VSCode开发Django指南

使用VSCode开发Django指南 一、概述 Django 是一个高级 Python 框架&#xff0c;专为快速、安全和可扩展的 Web 开发而设计。Django 包含对 URL 路由、页面模板和数据处理的丰富支持。 本文将创建一个简单的 Django 应用&#xff0c;其中包含三个使用通用基本模板的页面。在此…...

脑机新手指南(八):OpenBCI_GUI:从环境搭建到数据可视化(下)

一、数据处理与分析实战 &#xff08;一&#xff09;实时滤波与参数调整 基础滤波操作 60Hz 工频滤波&#xff1a;勾选界面右侧 “60Hz” 复选框&#xff0c;可有效抑制电网干扰&#xff08;适用于北美地区&#xff0c;欧洲用户可调整为 50Hz&#xff09;。 平滑处理&…...

python/java环境配置

环境变量放一起 python&#xff1a; 1.首先下载Python Python下载地址&#xff1a;Download Python | Python.org downloads ---windows -- 64 2.安装Python 下面两个&#xff0c;然后自定义&#xff0c;全选 可以把前4个选上 3.环境配置 1&#xff09;搜高级系统设置 2…...

LeetCode - 394. 字符串解码

题目 394. 字符串解码 - 力扣&#xff08;LeetCode&#xff09; 思路 使用两个栈&#xff1a;一个存储重复次数&#xff0c;一个存储字符串 遍历输入字符串&#xff1a; 数字处理&#xff1a;遇到数字时&#xff0c;累积计算重复次数左括号处理&#xff1a;保存当前状态&a…...

Frozen-Flask :将 Flask 应用“冻结”为静态文件

Frozen-Flask 是一个用于将 Flask 应用“冻结”为静态文件的 Python 扩展。它的核心用途是&#xff1a;将一个 Flask Web 应用生成成纯静态 HTML 文件&#xff0c;从而可以部署到静态网站托管服务上&#xff0c;如 GitHub Pages、Netlify 或任何支持静态文件的网站服务器。 &am…...

从零开始打造 OpenSTLinux 6.6 Yocto 系统(基于STM32CubeMX)(九)

设备树移植 和uboot设备树修改的内容同步到kernel将设备树stm32mp157d-stm32mp157daa1-mx.dts复制到内核源码目录下 源码修改及编译 修改arch/arm/boot/dts/st/Makefile&#xff0c;新增设备树编译 stm32mp157f-ev1-m4-examples.dtb \stm32mp157d-stm32mp157daa1-mx.dtb修改…...

IoT/HCIP实验-3/LiteOS操作系统内核实验(任务、内存、信号量、CMSIS..)

文章目录 概述HelloWorld 工程C/C配置编译器主配置Makefile脚本烧录器主配置运行结果程序调用栈 任务管理实验实验结果osal 系统适配层osal_task_create 其他实验实验源码内存管理实验互斥锁实验信号量实验 CMISIS接口实验还是得JlINKCMSIS 简介LiteOS->CMSIS任务间消息交互…...

Spring Cloud Gateway 中自定义验证码接口返回 404 的排查与解决

Spring Cloud Gateway 中自定义验证码接口返回 404 的排查与解决 问题背景 在一个基于 Spring Cloud Gateway WebFlux 构建的微服务项目中&#xff0c;新增了一个本地验证码接口 /code&#xff0c;使用函数式路由&#xff08;RouterFunction&#xff09;和 Hutool 的 Circle…...