【密码学】椭圆曲线密码体制(ECC)
椭圆曲线密码体制(Elliptic Curve Cryptography, ECC)是一种基于椭圆曲线数学特性的公钥密码系统。在介绍椭圆曲线之前,我们先来了解一下椭圆曲线的基本概念。
一、椭圆曲线是什么?
(1)椭圆曲线的数学定义
椭圆曲线是一条由方程 给定的曲线,其中a和b是常数,并满足
,以确保曲线没有奇点(即曲线是平滑的)。在无限域(如实数域)上,椭圆曲线看起来像是一条平滑的、不自交的曲线。
椭圆曲线的图像如下:
【注】椭圆曲线并不是椭圆,只因为该方程与计算椭圆周长的方程相似。
可以证明如果 没有重复因子,或者满足
那么椭圆曲线上的点集
可构成一个Abel群(阿贝尔群)。椭圆曲线包括所有曲线上的点以及一个特殊的点,我们称为无限远点
(2)椭圆曲线上的算术运算
椭圆曲线上定义了加法运算,这使得椭圆曲线成为一个群。具体来说,对于椭圆曲线上任意两点 P 和 Q,可以定义它们的和 R=P+Q,其计算方法遵循以下规则:
① 加法运算
加法:如果 P 和 Q 不重合,那么通过连接这两点的直线与椭圆曲线的第三个交点,然后在 y 轴上找到这个点的反射点作为 R
二倍点:如果 P=Q,则使用切线代替直线,找到切线与椭圆的交点,再找到该点关于 y 轴的反射点作为 2P
无穷远点:椭圆曲线上的加法还定义了一个特殊点,称为无穷远点,它与任何其他点相加都保持不变
② 点乘运算

点乘:将一个给定点沿着椭圆曲线进行多次加法操作。点乘运算通常被记作 kP,其中 k 是一个整数,P 是椭圆曲线上的一点。
如上图3P的计算过程,先计算出2P也就是Q,然后再将Q和P连接在一起,找到和椭圆曲线的交点,这个交点关于X轴的对称点就是3P。
二、椭圆曲线密码体制
有限域上的椭圆曲线是椭圆曲线的一个变体,它定义在一个有限域(finite field)上,而不是在实数域或复数域上。有限域上的椭圆曲线在密码学中有重要的应用,特别是用于构建椭圆曲线密码体制(ECC)
(1)有限域上的椭圆曲线
有限域是一个具有有限个元素的域。域意味着在这个集合中定义了加法和乘法操作,并且这些操作满足特定的代数性质,比如加法和乘法的封闭性、结合律、交换律、单位元的存在性、逆元的存在性等。
有限域的一个重要例子是模 p 的剩余类,这个有限域通常记作,当椭圆曲线定义在一个有限域
上时,我们考虑的是所有
,其中
和
都是
中的元素,并且满足上述椭圆曲线方程。这样的点集构成了有限域上的椭圆曲线。
(2)有限域上的椭圆曲线结论
在有限域上的椭圆曲线上定义的加法运算构成了一个阿贝尔群,这是因为加法运算满足群的四个基本性质:封闭性、结合律、存在单位元、存在逆元,同时加法运算还满足交换律。
-
封闭性:
对于椭圆曲线 E 上的任意两点 P 和 Q,它们的和 R=P+Q 也是一个椭圆曲线上的点。这意味着加法运算的结果仍然属于椭圆曲线 E。
-
结合律:
对于椭圆曲线 E 上的任意三点 P、Q 和 R,有 (P+Q)+R=P+(Q+R)。这意味着加法运算的顺序不影响结果。
-
单位元:
椭圆曲线 E 上定义了一个特殊点 O,称为无穷远点,它是加法的单位元。这意味着对于椭圆曲线上的任意点 P,都有 P+O=P。
-
逆元:
对于椭圆曲线 E 上的每一个点 P,存在一个唯一的点 −P,使得 P+(−P)=O。这里的 −P 称为 P 的加法逆元。
-
交换律:
对于椭圆曲线 E 上的任意两点 P 和 Q,有 P+Q=Q+P。这意味着加法运算满足交换律。
(3)椭圆曲线上的离散对数问题(ECDLP)
椭圆曲线上的离散对数问题 (ECDLP) 是椭圆曲线密码学 (ECC) 安全性的基础。ECDLP 是指在给定的椭圆曲线上,找到一个点的倍数所需的秘密倍数的问题。它的定义如下:

ECDLP 的难度在于,虽然给定一个点 P 和一个整数 k,很容易计算出 Q=kP,但是反过来,给定 Q 和 P,找到 k 是非常困难的。这种问题的难解性是椭圆曲线密码学安全性的核心。
ECDLP 的难度确保了椭圆曲线密码系统的安全性。由于目前没有已知的有效算法可以在多项式时间内解决 ECDLP,因此只要选择合适的椭圆曲线和密钥长度,就可以实现高度的安全性。
三、椭圆曲线密码学体制的应用
椭圆曲线密码学利用 ECDLP 的难解性来构建安全的密码协议,例如:
- 椭圆曲线数字签名算法 (ECDSA):用于创建数字签名。
- 椭圆曲线密钥交换协议 (ECDH):用于安全地交换密钥。
- 椭圆曲线集成加密方案 (ECIES):用于加密数据。
(1)椭圆曲线上的DH密钥交换算法(ECDH)举例说明
① 准备阶段
第一步:首先取一个素数 ,以及参数
,则椭圆曲线上的点构成Abel群
第二步:取上的一个生成元
,要求
的阶是一个非常大的数
,
的阶
是满足
的最小正整数。
第三步:将和生成元
作为公钥密码体制的公开参数对外公布,不保密。
② 密钥交换阶段

通过上面密钥交换算法,A和B共同拥有密钥K,攻击者如果想获得密钥K,他就必须由和
求出
,或者由
和
求出
,而这等价于求椭圆曲线上的离散对数问题ECDLP,因此是不可行的,所以确保了安全。
③ 带入具体数字举例说明

相关文章:
【密码学】椭圆曲线密码体制(ECC)
椭圆曲线密码体制(Elliptic Curve Cryptography, ECC)是一种基于椭圆曲线数学特性的公钥密码系统。在介绍椭圆曲线之前,我们先来了解一下椭圆曲线的基本概念。 一、椭圆曲线是什么? (1)椭圆曲线的数学定义…...
第25集《大佛顶首楞严经》
丑二、腾疑细释 分二:寅一、阿难腾疑;寅二、如来细释 请大家打开讲义第五十六页,“丑二、腾疑细释”。 本经的修学重点,就是修学首楞严王三昧。它的整个重点,其实就是一个心地法门。我们在行菩萨道的时候慢慢会发觉…...
python 读写文件之 open 和 with open() 详细解析
python 读写文件之 open 和 with open() 详细解析 文章目录 python 读写文件之 open 和 with open() 详细解析1. open() 和 with open() 能打开不同的文件类型吗?2. 文本文件和二进制文件的区别2.1 文本文件 (Text Files)2.2 二进制文件 (Binary Files)区别 3. 读文…...
操作系统:内存----知识点
什么是虚拟内存? 虚拟内存简称虚存,是计算机系统内存管理的一种技术。它是相对于物理内存而言的,可以理解为“假的”内存。它使得应用程序认为它拥有连续可用的内存(一个连续完整的地址空间),允许程序员编…...
pfx如何配置到nginx中
有pfx文件的时候如何在nginx上使用 好的,如果您已经确认没有中间证书(或中间证书内容为空),那么可以直接使用服务器证书和私钥。以下是简化后的步骤: 从PFX文件中导出私钥: openssl pkcs12 -in xxx.com.pfx…...
详细测评下搬瓦工香港CN2 GIA VPS
搬瓦工香港VPS分移动CMI和电信CN2 GIA两个大类,一个属于骨干网,一个属于轻负载。搬瓦工的香港CN2 GIA根据测试来看实际上是CN2 GIABGP,并非三网纯CN2 GIA。详细测评数据如下: 用FIO再给测试一下硬盘I/O,可以仔细看看数…...
Java中的五种线程池类型
Java中的五种线程池类型 1. CachedThreadPool (有缓冲的线程池)2. FixedThreadPool (固定大小的线程池)3. ScheduledThreadPool(计划线程池)4. SingleThreadExecutor (单线程线程池)…...
FFmpeg Windows安装教程
一. 下载ffmpeg 进入Download FFmpeg网址,点击下载windows版ffmpeg。 下载第一个essentials版本就行。 二. 环境配置 上面源码解压后如下 将bin添加到系统环境变量 验证安装是否成功,输入ffmpeg –version,显示版本即为安装成功。...
‘#‘ is not followed by a macro parameter 关于宏定义的错误
今天在项目代码上想定义一个这样的宏,结果编译错误,这个宏定义类似这样的: #define DELETE_FILE_DPP(key) \ #ifdef PLATFORM_DPP \delete_file(&key); \ #endif 因为有平台之分需要用到编译宏,但不想每个调用的地方都写 #i…...
内网穿透--meterpreter端口转发实验
实验背景 通过公司带有防火墙功能的路由器接入互联网,然后由于私网IP的缘故,公网无法直接访问内部主机,则需要通过已连接会话,代理穿透访问内网主机服务。 实验设备 1.路由器一台 2.内网 Win 7一台 3.公网 Kali 一台 4.网络 …...
Python 数据类:减少样板并提高可读性
一.介绍 在本文中,我们将了解数据类。Python 3.7 引入了数据类,这是一个强大的功能,它简化了创建主要用于存储数据的类的过程。数据类减少了样板代码并提供有用的默认行为,使您的代码更简洁、更高效。 二.为什么要使用数据类&am…...
家庭教育系列—北京海淀区”鸡娃“攻略
文章目录 1. 背景介绍2. 道3. 法3.1 **目标设定(Goal Setting)**3.2 **学习计划(Study Planning)**3.3 **资源利用(Resource Utilization)**3.4 **能力培养(Skill Development)**4. 术4.1 英语4.1.1 启蒙4.1.2 启蒙之后4.3 数学4.3.1 奥数4.3.2 普通数学知识4.4 语文4.…...
DLMS/COSEM中的信息安全:DLMS/COSEM安全概念(下)
3.安全语境 安全语境定义了与加密转换有关的安全属性,并包括以下元素: ——安全组件,确定可用的安全算法。 ——安全策略,在AA内对所有xDLMS APDU确定将应用的那种保护; ——与给定的安全算法相关的安全资料,包含安全密钥、初始化向量、公共密钥证书等。由于安全资料是针…...
基于 systemc-2.3.1的virtual device 接入 qemu-arm
1,下载systemc-2.3.1 下载网址: SystemC Files $ wget https://www.accellera.org/images/downloads/standards/systemc/systemc-2.3.1.tgz 2,编译安装 systemc-2.3.1 tar zxf systemc-2.3.1.tgz cd systemc-2.3.1/ export CXXg mkdir bu…...
(七)自动化测试
1. 简述什么是UI自动化测试? 正确回答通过率:78.0%[ 详情 ] 推荐指数: ★★★★ 试题难度: 中级 UI自动化测试(User Interface Automation Testing)是一种通过编写脚本或使用自动化测试工具,对用户界面(UI)进行自动化测试的方法。它可以模拟用户与应用程序或网站的交…...
【信创】virtualbox内虚拟机连接U盘 _ 统信 _ 麒麟 _ 中科方德
原文链接:【信创】virtualbox内虚拟机连接U盘 | 统信 | 麒麟 | 中科方德 Hello,大家好啊!今天给大家带来一篇关于在信创操作系统上使用VirtualBox虚拟机连接物理主机U盘的文章。在使用VirtualBox虚拟机时,有时候需要将物理主机上的…...
【2024】Datawhale AI夏令营 Task4笔记——vllm加速方式修改及llm推理参数调整上分
【2024】Datawhale AI夏令营 Task4笔记——vllm加速方式修改及llm推理参数调整上分 本文承接文章【2024】Datawhale AI夏令营 Task3笔记——Baseline2部分代码解读及初步上分思路,对其中vllm加速方式进行修改,推理速度获得了极大提升。另外,…...
腾讯OCR签名算法
云服务器 签名方法 v3-调用方式-API 中心-腾讯云 一,签名算法-官网 copy官网 package com.smcv.customer.service.util;import org.springframework.http.HttpHeaders;import javax.crypto.Mac; import javax.crypto.spec.SecretKeySpec; import javax.xml.bind.D…...
CTFHUB-SSRF-DNS重绑定 Bypass
开启题目,页面空白,访问附件 附件是一个知乎的文章,翻到下面点击文中这个链接 跳转之后,进行设置 把得到的链接拼接到题目的后面进行访问,然后得到了本题的 flag...
【oracle】数据库基本使用
一、oracle数据库简介 Oracle 数据库,亦称 Oracle RDBMS,或简称 Oracle,是一款由甲骨文公司推出的高效、稳定且广泛应用的关系型数据库管理系统。该数据库系统不仅在数据管理领域处于领先地位,而且由于其良好的可移植性、易用性和…...
云原生核心技术 (7/12): K8s 核心概念白话解读(上):Pod 和 Deployment 究竟是什么?
大家好,欢迎来到《云原生核心技术》系列的第七篇! 在上一篇,我们成功地使用 Minikube 或 kind 在自己的电脑上搭建起了一个迷你但功能完备的 Kubernetes 集群。现在,我们就像一个拥有了一块崭新数字土地的农场主,是时…...
51c自动驾驶~合集58
我自己的原文哦~ https://blog.51cto.com/whaosoft/13967107 #CCA-Attention 全局池化局部保留,CCA-Attention为LLM长文本建模带来突破性进展 琶洲实验室、华南理工大学联合推出关键上下文感知注意力机制(CCA-Attention),…...
逻辑回归:给不确定性划界的分类大师
想象你是一名医生。面对患者的检查报告(肿瘤大小、血液指标),你需要做出一个**决定性判断**:恶性还是良性?这种“非黑即白”的抉择,正是**逻辑回归(Logistic Regression)** 的战场&a…...
java调用dll出现unsatisfiedLinkError以及JNA和JNI的区别
UnsatisfiedLinkError 在对接硬件设备中,我们会遇到使用 java 调用 dll文件 的情况,此时大概率出现UnsatisfiedLinkError链接错误,原因可能有如下几种 类名错误包名错误方法名参数错误使用 JNI 协议调用,结果 dll 未实现 JNI 协…...
对WWDC 2025 Keynote 内容的预测
借助我们以往对苹果公司发展路径的深入研究经验,以及大语言模型的分析能力,我们系统梳理了多年来苹果 WWDC 主题演讲的规律。在 WWDC 2025 即将揭幕之际,我们让 ChatGPT 对今年的 Keynote 内容进行了一个初步预测,聊作存档。等到明…...
OkHttp 中实现断点续传 demo
在 OkHttp 中实现断点续传主要通过以下步骤完成,核心是利用 HTTP 协议的 Range 请求头指定下载范围: 实现原理 Range 请求头:向服务器请求文件的特定字节范围(如 Range: bytes1024-) 本地文件记录:保存已…...
C++.OpenGL (10/64)基础光照(Basic Lighting)
基础光照(Basic Lighting) 冯氏光照模型(Phong Lighting Model) #mermaid-svg-GLdskXwWINxNGHso {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-GLdskXwWINxNGHso .error-icon{fill:#552222;}#mermaid-svg-GLd…...
select、poll、epoll 与 Reactor 模式
在高并发网络编程领域,高效处理大量连接和 I/O 事件是系统性能的关键。select、poll、epoll 作为 I/O 多路复用技术的代表,以及基于它们实现的 Reactor 模式,为开发者提供了强大的工具。本文将深入探讨这些技术的底层原理、优缺点。 一、I…...
R语言速释制剂QBD解决方案之三
本文是《Quality by Design for ANDAs: An Example for Immediate-Release Dosage Forms》第一个处方的R语言解决方案。 第一个处方研究评估原料药粒径分布、MCC/Lactose比例、崩解剂用量对制剂CQAs的影响。 第二处方研究用于理解颗粒外加硬脂酸镁和滑石粉对片剂质量和可生产…...
无人机侦测与反制技术的进展与应用
国家电网无人机侦测与反制技术的进展与应用 引言 随着无人机(无人驾驶飞行器,UAV)技术的快速发展,其在商业、娱乐和军事领域的广泛应用带来了新的安全挑战。特别是对于关键基础设施如电力系统,无人机的“黑飞”&…...
