【计算机网络——分组延时,丢失,吞吐量】
处理延时:1检查分组首部信息,决定将该分组导向何处所需时间。2检查比特级别的差错所需时间:分析这个分组是否出错,目标IP地址字段提取出来,查路由表……。
传播延时和传输延时:传输延时就是分组到链路所需时间以及存储转发延时,即:分组大小/链路带宽;传播延时就是到下一个结点所需时间,即:物理链路距离/媒体传播速度。
排队延时:在输出链路上等待的时间,决定于当前路由器拥塞程度。取决于流量强度I=La/R,R是链路带宽,L是每个分组比特数,a是每单位时间分组到达队列的平均速率。I在0和1之间,0代表轻载,1代表重载,超过1 就是丢包,到达的分组发现一个满的队列,没有地方存储这个分组了,路由器就将其丢弃。
中科大本节的20-38没有听懂,icmp协议,ttl生存时间,rtt……
相关文章:
【计算机网络——分组延时,丢失,吞吐量】
处理延时:1检查分组首部信息,决定将该分组导向何处所需时间。2检查比特级别的差错所需时间:分析这个分组是否出错,目标IP地址字段提取出来,查路由表……。 传播延时和传输延时:传输延时就是分组到链路所需…...
使用1panel 申请证书配置雷池站点
1.创建测试站点 2.使用1panel申请测试站点的自签名证书 ps:雷池支持自签的证书 关于如果选择网站的SSL证书 百度搜索 看起来是证书的问题 调整了参数重新申请一个证书上传 注意,如果文件上传错了,雷池会报错,如下图 再次访问配…...
4章7节:用R做数据重塑,数据去重和数据的匹配
在数据科学的分析流程中,数据重塑是一项非常重要的操作。数据的重塑通常指将数据从一种形式转换为另一种形式,以满足后续分析的需求。R语言提供了丰富的工具和函数来帮助用户高效地进行数据重塑操作。本文中,我们将深入探讨数据重塑的概念及其…...
大数据面试SQL(七):累加刚好超过各省GDP40%的地市名称
文章目录 累加刚好超过各省GDP40%的地市名称 一、题目 二、分析 三、SQL实战 四、样例数据参考 累加刚好超过各省GDP40%的地市名称 一、题目 现有各省地级市的gdp数据,求从高到低累加刚好超过各省GDP40%的地市名称,临界地市也需要。 例如: 浙江省…...
建议收藏!这4款设计师常用的素材管理软件,助你工作效率翻倍!
嘿,设计师们!你是否还在为那一堆堆散乱的素材头疼?每次灵感来袭,却要花费大量时间在层层文件夹中苦苦搜寻?别急,今天我就来给大家推荐4款超给力的素材管理软件,它们不仅能帮你轻松整理素材库&am…...
用于NLP领域的排序模型最佳实践
在自然语言处理(NLP)领域,用于排序任务的模型通常是指那些能够对文本进行排序、比较或评估其相关性的模型。这些模型可以应用于诸如文档排序、句子排序、问答系统中的答案排序等多种场景。在当前的研究和发展中,基于深度学习的方法…...
域名未备案的支付平台遭遇大攻击怎么办
域名未备案的支付平台遭遇大攻击怎么办?在当今数字化时代,支付平台的安全与稳定性是保障业务连续性和用户信任的关键。然而,对于因域名未备案而面临法律风险的支付平台来说,其安全挑战更为严峻。当这类平台遭遇大规模的网络攻击&a…...
【NI-DAQmx入门】LabVIEW数据采集基础应用程序框架
对于可管理规模的 LabVIEW 程序,分析现有程序或设计新程序的方法通常是从整体到具体,即从高级到低级的分析和设计。从一开始就直接深入细节可能会效率较低。 在设计阶段,开发人员首先将程序垂直划分为几个层级。从最顶层开始,他们…...
海山数据库(He3DB)源码详解:CommitTransaction函数源码详解
文章目录 海山数据库(He3DB)源码详解:CommitTransaction函数1. 执行条件2. 执行过程2.1 获取当前节点状态:2.2 检查当前状态:2.3 预提交处理:2.4 提交处理:2.5 释放资源:2.6 提交事务: 作者介绍…...
【网络】传输层TCP协议的报头和传输机制
目录 引言 报头和有效载荷 确认应答机制 捎带应答机制 超时重传机制 排序和去重 连接管理机制 个人主页:东洛的克莱斯韦克-CSDN博客 引言 TCP是传输层协议,全称传输控制协议。TCP报头中有丰富的字段以及协议本身会制定完善的策略来保证网络传输的…...
【活动报名】打造编程学习“知识宝库”:高效笔记记录与整理指南
如何高效记录并整理编程学习笔记? 在编程学习的旅程中,拥有一套高效的笔记记录和整理方法至关重要。以下将从三个方向为您详细介绍如何打造属于自己的编程学习“知识宝库”。 方向一:笔记工具选择 选择合适的笔记工具是高效记录编程学习笔记…...
使用Arduino IDE生成带有bootloader的烧录文件
使用Arduino IDE生成bin(烧录)文件 1、在“项目”中,选择“导出已编译的二进制文件” 2、在工程目录中,会出现“build”文件夹 3、在build文件夹中,有hex文件,以及包含bootloader的bin和hex文件 bin和h…...
搭建高可用OpenStack(Queen版)集群(九)之部署nova计算节点
一、搭建高可用OpenStack(Queen版)集群之部署计算节点 一、部署nova 1、安装nova-compute 在全部计算节点安装nova-compute服务 yum install python-openstackclient openstack-utils openstack-selinux -y yum install openstack-nova-compute -y 若yu…...
C# 字符串扩展方法
功能 1.判断一个字符串是否为null或者空字符串 2.判断一个字符串是否为null或者空白字符 3.判断一个字符串是否为数字 4.判断一个字符串是否为邮件 5.判断一个字符串是否为字母加数字 6.判断一个字符串是否为手机号码 7.判断一个字符串是否为电话号码 8.判断一个字符串是否为网…...
JookDB和MobaXterm下载安装使用
文章目录 1.使用背景2.MobaXterm的下载安装使用3.JooKDB的下载安装使用 1.使用背景 由于xshell和xftp等工具都是收费的,即使有破解版但是有的公司里不让用盗版的软件。可以使用MobaXterm来替代。 同理可使用JooKDB来代替收费的navicat 来连接数据库。 2.MobaXterm…...
Docker安装Nacos(详细教程)
Docker安装Nacos的步骤相对直接,但需要注意一些细节以确保安装成功。以下是一个详细的安装步骤指南: 1. 安装Docker 首先,确保你的系统中已经安装了Docker。如果尚未安装,你可以通过访问Docker的官方网站或使用包管理器…...
Pandas:提供了快速、灵活和表达式丰富的数据结构。
引言 Pandas是Python中最为广泛使用的数据分析和操作库之一,特别适用于处理结构化数据。该库的名称源自“Panel Data”的缩写,意为面板数据或多维数据。Pandas基于NumPy构建,继承了其高效的数组计算能力,并在此基础上进一步扩展&…...
强!小目标检测全新突破!检测速度快10倍,GPU使用减少73.4%
强!小目标检测全新突破,提出Mamba-in-Mamba结构,通过内外两层Mamba模块,同时提取全局和局部特征,实现了检测速度快10倍,GPU使用减少73.4%的显著效果! 【小目标检测】是近年来在深度…...
重修设计模式-创建型-原型模式
重修设计模式-创建型-原型模式 原型模式就是利用已有对象(原型)通过拷贝方式来创建对象的模式,达到节省对象创建时间的目的。适用于对象创建成本较大,且同一类的不同对象之间差别不大的场景。 比如一个对象中的数据需要经过复杂…...
S71200 - 编程 - 笔记
1 DEMO 1.1气阀控制 1.2 红绿灯 基于PLC红绿灯控制_哔哩哔哩_bilibili 2 介绍变量DB,M,I,Q的使用 在PLC编程中,通常会使用多种类型的变量来实现逻辑控制、数据存储和输入输出操作。以下是常见的PLC变量类型及其用途ÿ…...
突破不可导策略的训练难题:零阶优化与强化学习的深度嵌合
强化学习(Reinforcement Learning, RL)是工业领域智能控制的重要方法。它的基本原理是将最优控制问题建模为马尔可夫决策过程,然后使用强化学习的Actor-Critic机制(中文译作“知行互动”机制),逐步迭代求解…...
TRS收益互换:跨境资本流动的金融创新工具与系统化解决方案
一、TRS收益互换的本质与业务逻辑 (一)概念解析 TRS(Total Return Swap)收益互换是一种金融衍生工具,指交易双方约定在未来一定期限内,基于特定资产或指数的表现进行现金流交换的协议。其核心特征包括&am…...
深入解析C++中的extern关键字:跨文件共享变量与函数的终极指南
🚀 C extern 关键字深度解析:跨文件编程的终极指南 📅 更新时间:2025年6月5日 🏷️ 标签:C | extern关键字 | 多文件编程 | 链接与声明 | 现代C 文章目录 前言🔥一、extern 是什么?&…...
【Oracle】分区表
个人主页:Guiat 归属专栏:Oracle 文章目录 1. 分区表基础概述1.1 分区表的概念与优势1.2 分区类型概览1.3 分区表的工作原理 2. 范围分区 (RANGE Partitioning)2.1 基础范围分区2.1.1 按日期范围分区2.1.2 按数值范围分区 2.2 间隔分区 (INTERVAL Partit…...
RNN避坑指南:从数学推导到LSTM/GRU工业级部署实战流程
本文较长,建议点赞收藏,以免遗失。更多AI大模型应用开发学习视频及资料,尽在聚客AI学院。 本文全面剖析RNN核心原理,深入讲解梯度消失/爆炸问题,并通过LSTM/GRU结构实现解决方案,提供时间序列预测和文本生成…...
人工智能--安全大模型训练计划:基于Fine-tuning + LLM Agent
安全大模型训练计划:基于Fine-tuning LLM Agent 1. 构建高质量安全数据集 目标:为安全大模型创建高质量、去偏、符合伦理的训练数据集,涵盖安全相关任务(如有害内容检测、隐私保护、道德推理等)。 1.1 数据收集 描…...
深度学习之模型压缩三驾马车:模型剪枝、模型量化、知识蒸馏
一、引言 在深度学习中,我们训练出的神经网络往往非常庞大(比如像 ResNet、YOLOv8、Vision Transformer),虽然精度很高,但“太重”了,运行起来很慢,占用内存大,不适合部署到手机、摄…...
ThreadLocal 源码
ThreadLocal 源码 此类提供线程局部变量。这些变量不同于它们的普通对应物,因为每个访问一个线程局部变量的线程(通过其 get 或 set 方法)都有自己独立初始化的变量副本。ThreadLocal 实例通常是类中的私有静态字段,这些类希望将…...
【51单片机】4. 模块化编程与LCD1602Debug
1. 什么是模块化编程 传统编程会将所有函数放在main.c中,如果使用的模块多,一个文件内会有很多代码,不利于组织和管理 模块化编程则是将各个模块的代码放在不同的.c文件里,在.h文件里提供外部可调用函数声明,其他.c文…...
13.10 LangGraph多轮对话系统实战:Ollama私有部署+情感识别优化全解析
LangGraph多轮对话系统实战:Ollama私有部署+情感识别优化全解析 LanguageMentor 对话式训练系统架构与实现 关键词:多轮对话系统设计、场景化提示工程、情感识别优化、LangGraph 状态管理、Ollama 私有化部署 1. 对话训练系统技术架构 采用四层架构实现高扩展性的对话训练…...
