白骑士的Matlab教学高级篇 3.2 并行计算
系列目录
上一篇:白骑士的Matlab教学高级篇 3.1 高级编程技术
并行计算是一种通过同时执行多个计算任务来加速程序运行的方法。在MATLAB中,并行计算工具箱(Parallel Computing Toolbox)提供了丰富的并行计算功能,使用户可以充分利用多核处理器、图形处理单元(GPU)和计算集群来提升计算效率。本节将介绍并行计算的基本概念、并行for循环(parfor)、GPU计算和集群计算。
并行计算简介
并行计算是一种计算模式,通过同时进行多个计算任务来提高计算效率。它通常应用于需要大量计算的任务,如数值模拟、大数据处理和复杂算法等。MATLAB通过并行计算工具箱,支持多种并行计算方法,使用户能够在多核处理器、GPU和集群环境中高效执行计算任务。
并行计算的优点
- 提高计算速度:通过并行执行多个任务,可以显著减少计算时间。
- 优化资源利用:充分利用多核处理器和GPU的计算能力,提升资源利用率。
- 处理大规模问题:并行计算使得处理大规模数据和复杂问题成为可能。
并行计算的挑战
- 任务划分:需要合理划分任务,以实现负载均衡,避免计算资源闲置。
- 数据依赖性:需要处理任务之间的依赖关系,避免竞争条件和数据冲突。
- 通信开销:需要考虑不同任务之间的通信开销,尽量减少数据传输时间。
并行for循环(parfor)
在MATLAB中,并行for循环(parfor)是一种常用的并行计算方式,适用于独立且可以并行执行的循环迭代。parfor与标准for循环类似,但其迭代可以在多个处理器核心上并行执行,从而加速计算。
基本语法
parfor i = 1:N% 并行执行的代码
end
示例
以下是一个使用parfor的简单示例,用于计算矩阵元素的平方和:
N = 1000000;
A = rand(N, 1); % 生成随机矩阵
sumResult = 0;parfor i = 1:NsumResult = sumResult + A(i)^2;
enddisp(sumResult);
在上述示例中,parfor循环将随机矩阵A的每个元素的平方和进行计算,分配到多个处理器核心并行执行,从而加速了计算过程。
注意事项
- 变量划分:parfor循环中的变量分为"循环变量"、"临时变量"和"切片变量"。需要注意变量的划分和使用,以确保并行计算的正确性。
- 数据依赖性:需要避免parfor循环中的数据依赖性,确保每个迭代都是独立的。
- 调试与性能优化:可以使用‘tic‘和‘toc‘函数来测量parfor循环的执行时间,并通过调整并行参数来优化性能。
GPU计算
GPU(图形处理单元)是一种专门用于图形处理和并行计算的处理器,具有强大的计算能力。在MATLAB中,用户可以使用GPU计算工具箱(Parallel Computing Toolbox)在GPU上执行计算任务,以显著加速计算。
基本用法
在MATLAB中,可以使用 ‘gpuArray‘ 函数将数据从CPU传输到GPU,并使用GPU上的函数进行计算,例如:
A = rand(1000, 1000);
B = gpuArray(A); % 将数据传输到GPU
C = B.^2; % 在GPU上进行计算
D = gather(C); % 将结果从GPU传回CPU
示例
以下是一个使用GPU计算的示例,用于计算矩阵乘法:
A = rand(1000, 1000);
B = rand(1000, 1000);A_gpu = gpuArray(A); % 将数据传输到GPU
B_gpu = gpuArray(B);
C_gpu = A_gpu * B_gpu; % 在GPU上进行矩阵乘法C = gather(C_gpu); % 将结果从GPU传回CPUdisp(C);
在上述示例中,矩阵A和B被传输到GPU进行乘法计算,然后将结果传回CPU,这样可以显著加速计算过程。
集群计算
集群计算是一种通过多个计算节点(计算机)协同工作来完成计算任务的方法。在MATLAB中,用户可以使用并行计算工具箱和MATLAB分布式计算服务器(MATLAB Distributed Computing Server)来在集群上执行计算任务。
基本概念
- 计算节点:集群中的每台计算机称为计算节点,负责执行计算任务。
- 作业调度器:用于管理和调度计算任务到各个计算节点。
- 作业与任务:在集群上提交的计算任务称为作业(job),作业中的子任务称为任务(task)。
使用步骤
- 配置集群:配置集群环境,包括安装MATLAB分布式计算服务器和设置作业调度器。
- 编写代码:编写并行计算代码,并使用‘parpool‘函数启动并行计算池。
- 提交作业:使用‘batch‘函数提交作业到集群,并监控作业执行状态。
示例
以下是一个在集群上执行并行计算的示例:
% 启动并行计算池
parpool('MyCluster', 4); % 使用4个计算节点% 提交作业
job = batch(@myFunction, 1, {inputData});% 等待作业完成
wait(job);% 获取结果
result = fetchOutputs(job);
disp(result);% 关闭并行计算池
delete(gcp('nocreate'));function output = myFunction(input)% 用户定义的计算函数output = input.^2;
end
在上述示例中,‘parpool‘ 函数启动了一个并行计算池,‘batch‘ 函数提交了一个并行计算作业,‘wait‘ 函数等待作业完成,‘fetchOutputs‘ 函数获取作业结果。整个计算过程在集群上并行执行,从而提高计算效率。
总结
通过并行计算,MATLAB用户可以显著提高计算效率,充分利用多核处理器、GPU和计算集群的强大计算能力。并行for循环(parfor)、GPU计算和集群计算是MATLAB中常用的并行计算方法,掌握这些技术可以帮助用户高效地解决复杂计算问题。在实际应用中,根据具体需求选择合适的并行计算方法,可以显著提升MATLAB程序的性能和运行效率。
下一篇:白骑士的Matlab教学高级篇 3.3 工具箱与扩展
相关文章:
白骑士的Matlab教学高级篇 3.2 并行计算
系列目录 上一篇:白骑士的Matlab教学高级篇 3.1 高级编程技术 并行计算是一种通过同时执行多个计算任务来加速程序运行的方法。在MATLAB中,并行计算工具箱(Parallel Computing Toolbox)提供了丰富的并行计算功能,使用…...
JS中【解构赋值】知识点解读
解构赋值(Destructuring Assignment)是 JavaScript 中一种从数组或对象中提取数据的简便方法,可以将其赋值给变量。这种语法可以让代码更加简洁、清晰。下面我会详细讲解解构赋值的相关知识点。 1. 数组解构赋值 数组解构赋值允许你通过位置…...
【Pyspark-驯化】一文搞懂Pyspark中对json数据处理使用技巧:get_json_object
【Pyspark-驯化】一文搞懂Pyspark中对json数据处理使用技巧:get_json_object 本次修炼方法请往下查看 🌈 欢迎莅临我的个人主页 👈这里是我工作、学习、实践 IT领域、真诚分享 踩坑集合,智慧小天地! 🎇 …...
第10章 无持久存储的文件系统 (1)
目录 前言 10.1 proc文件系统 10.1.1 /proc 内容 本专栏文章将有70篇左右,欢迎关注,查看后续文章。 前言 即存在于内存中的文件系统。如: proc: sysfs: 即/sys目录。 内容不一定是ASCII文本,可能是二进…...
如何把命令行创建python虚拟环境与pycharm项目管理更好地结合起来
1. 问题的提出 我在linux或windows下的某个目录如“X”下使用命令行的方式创建了一个python虚拟环境(参考文章),对应的目录为myvenv, 现在我想使用pycharm创建python项目myproject,并且利用虚拟环境myvenv,怎么办&…...
keepalived+lvs高可用负载均衡集群配置方案
配置方案 一、配置主备节点1. 在主备节点上安装软件2. 编写配置文件3. 启动keepalived服务 二、配置web服务器1. 安装并启动http服务2. 编写主页面3.配置虚拟地址4. 配置ARP 三、测试 服务器IP: 主负载均衡服务器 master 192.168.152.71备负载均衡服务器 backup 192…...
Azure OpenAI Swagger Validation Failure with APIM
题意:Azure OpenAI Swagger 验证失败与 APIM 问题背景: Im converting the Swagger for Azure OpenAI API Version 2023-07-01-preview from json to yaml 我正在将 Azure OpenAI API 版本 2023-07-01-preview 的 Swagger 从 JSON 转换为 YAML。 My S…...
haproxy高级功能配置
介绍HAProxy高级配置及实用案例 一.基于cookie会话保持 cookie value:为当前server指定cookie值,实现基于cookie的会话黏性,相对于基于 source 地址hash 调度算法对客户端的粒度更精准,但同时也加大了haproxy负载,目前此模式使用…...
XXL-JOB分布式定时任务框架快速入门
文章目录 前言定时任务分布式任务调度 1、XXL-JOB介绍1.1 XXL-JOB概述1.2 XXL-JOB特性1.3 整体架构 2、XXL-JOB任务中心环境搭建2.1 XXL-JOB源码下载2.2 IDEA导入xxljob工程2.3 初始化数据库2.4 Docker安装任务管理中心 3、XXL-JOB任务注册测试3.1 引入xxl-job核心依赖3.2 配置…...
直流电机及其驱动
直流电机是一种将电能转换为机械能的装置,有两个电极,当电极正接时,电机正转,当电极反接时,电机反转。 直流电机属于大功率器件,GPIO口无法直接驱动,需要配合电机驱动电路来操作 TB6612是一款双…...
Java-判断一个字符串是否为有效的JSON字符串
在 Java 中判断一个字符串是否为有效的 JSON 字符串,可以使用不同的库来进行验证。常见的库 包括 org.json、com.google.gson 和 com.alibaba.fastjson 等。这里我将展示如何使用 com.alibaba.fastjson 库来实现一个简单的工具类,用于判断给定的字符串…...
FPGA开发板的基本知识及应用
FPGA开发板是一种专门设计用于开发和测试现场可编程门阵列(Field-Programmable Gate Array, FPGA)的硬件平台。FPGA是一种高度可配置的集成电路,能够在制造后被编程以执行各种数字逻辑功能。FPGA开发板通常包含一个FPGA芯片以及一系列支持电路和接口,以便…...
JVM知识总结(性能调优)
文章收录在网站:http://hardyfish.top/ 文章收录在网站:http://hardyfish.top/ 文章收录在网站:http://hardyfish.top/ 文章收录在网站:http://hardyfish.top/ 性能调优 何时进行JVM调优? 遇到以下情况,…...
基于Ascend C的Matmul算子性能优化最佳实践
矩阵乘法是深度学习计算中的基础操作,对于提升模型训练和推理速度至关重要。昇腾AI处理器是一款专门面向AI领域的AI加速器,其AI Core采用达芬奇架构,以高性能Cube计算引擎为基础,针对矩阵运算进行加速,可大幅提高单位面…...
SQL注入之EVAL长度限制突破技巧
要求: PHP Eval函数参数限制在16个字符的情况下 ,如何拿到Webshell? widows小皮环境搭建: 使用phpstudy搭建一个网站。 随后在该eval文件夹下创建一个webshell.php文件,并在其输入代码环境 解题思路: 通…...
稀疏注意力:时间序列预测的局部性和Transformer的存储瓶颈
时间序列预测是许多领域的重要问题,包括对太阳能发电厂发电量、电力消耗和交通拥堵情况的预测。在本文中,提出用Transformer来解决这类预测问题。虽然在我们的初步研究中对其性能印象深刻,但发现了它的两个主要缺点:(1)位置不可知性:规范Tran…...
详谈系统中的环境变量
目录 前言1. 指令背后的本质2. 环境变量背后的本质3. 环境变量到底是什么4. 命令行参数5. 本地变量 与 内置命令6. 环境变量的相关命令 前言 相信在 it 行业学习或者工作的小伙伴们,基本都配置过环境变量(windows环境下),如果你也…...
RAG与LLM原理及实践(11)--- Milvus hybrid search 源码分析及思想
目录 背景 hybrid search 源码分析 WeightedRanker 源码 hybrid search 核心 参数详解 基本入参 扩展入参 aysnc方式代码调用案例 说明 源码逻辑 prepare 调用过程 stub 调用结果 stub 调用过程 blocking 与 async 调用方式 深入内部core weightedRanker 的ch…...
JavaScript模拟空调效果
JavaScript模拟空调效果https://www.bootstrapmb.com/item/15074 在JavaScript中模拟空调效果主要依赖于前端界面的交互和状态变化,因为实际的温度调节、风扇速度调整等硬件操作无法直接通过JavaScript在浏览器中实现。不过,我们可以通过JavaScript来模…...
14.2 Pandas数据处理
欢迎来到我的博客,很高兴能够在这里和您见面!欢迎订阅相关专栏: 工💗重💗hao💗:野老杂谈 ⭐️ 全网最全IT互联网公司面试宝典:收集整理全网各大IT互联网公司技术、项目、HR面试真题. ⭐️ AIGC时代的创新与未来:详细讲解AIGC的概念、核心技术、应用领域等内容。 ⭐…...
KubeSphere 容器平台高可用:环境搭建与可视化操作指南
Linux_k8s篇 欢迎来到Linux的世界,看笔记好好学多敲多打,每个人都是大神! 题目:KubeSphere 容器平台高可用:环境搭建与可视化操作指南 版本号: 1.0,0 作者: 老王要学习 日期: 2025.06.05 适用环境: Ubuntu22 文档说…...
Vue记事本应用实现教程
文章目录 1. 项目介绍2. 开发环境准备3. 设计应用界面4. 创建Vue实例和数据模型5. 实现记事本功能5.1 添加新记事项5.2 删除记事项5.3 清空所有记事 6. 添加样式7. 功能扩展:显示创建时间8. 功能扩展:记事项搜索9. 完整代码10. Vue知识点解析10.1 数据绑…...
设计模式和设计原则回顾
设计模式和设计原则回顾 23种设计模式是设计原则的完美体现,设计原则设计原则是设计模式的理论基石, 设计模式 在经典的设计模式分类中(如《设计模式:可复用面向对象软件的基础》一书中),总共有23种设计模式,分为三大类: 一、创建型模式(5种) 1. 单例模式(Sing…...
LeetCode - 394. 字符串解码
题目 394. 字符串解码 - 力扣(LeetCode) 思路 使用两个栈:一个存储重复次数,一个存储字符串 遍历输入字符串: 数字处理:遇到数字时,累积计算重复次数左括号处理:保存当前状态&a…...
基础测试工具使用经验
背景 vtune,perf, nsight system等基础测试工具,都是用过的,但是没有记录,都逐渐忘了。所以写这篇博客总结记录一下,只要以后发现新的用法,就记得来编辑补充一下 perf 比较基础的用法: 先改这…...
C++ 基础特性深度解析
目录 引言 一、命名空间(namespace) C 中的命名空间 与 C 语言的对比 二、缺省参数 C 中的缺省参数 与 C 语言的对比 三、引用(reference) C 中的引用 与 C 语言的对比 四、inline(内联函数…...
TRS收益互换:跨境资本流动的金融创新工具与系统化解决方案
一、TRS收益互换的本质与业务逻辑 (一)概念解析 TRS(Total Return Swap)收益互换是一种金融衍生工具,指交易双方约定在未来一定期限内,基于特定资产或指数的表现进行现金流交换的协议。其核心特征包括&am…...
分布式增量爬虫实现方案
之前我们在讨论的是分布式爬虫如何实现增量爬取。增量爬虫的目标是只爬取新产生或发生变化的页面,避免重复抓取,以节省资源和时间。 在分布式环境下,增量爬虫的实现需要考虑多个爬虫节点之间的协调和去重。 另一种思路:将增量判…...
代理篇12|深入理解 Vite中的Proxy接口代理配置
在前端开发中,常常会遇到 跨域请求接口 的情况。为了解决这个问题,Vite 和 Webpack 都提供了 proxy 代理功能,用于将本地开发请求转发到后端服务器。 什么是代理(proxy)? 代理是在开发过程中,前端项目通过开发服务器,将指定的请求“转发”到真实的后端服务器,从而绕…...
安全突围:重塑内生安全体系:齐向东在2025年BCS大会的演讲
文章目录 前言第一部分:体系力量是突围之钥第一重困境是体系思想落地不畅。第二重困境是大小体系融合瓶颈。第三重困境是“小体系”运营梗阻。 第二部分:体系矛盾是突围之障一是数据孤岛的障碍。二是投入不足的障碍。三是新旧兼容难的障碍。 第三部分&am…...
