FPGA解码SDI视频任意尺寸缩放拼接输出 提供工程源码和技术支持
目录
- 1、前言
- 2、SDI理论练习
- 3、设计思路和架构
- SDI摄像头
- Gv8601a单端转差
- GTX解串
- SDI解码
- VGA时序恢复
- YUV转RGB
- 图像缩放
- FDMA图像缓存实现拼接
- HDMI驱动
- 4、vivado工程详解
- 5、上板调试验证并演示
- 6、福利:工程代码的获取
1、前言
FPGA实现SDI视频编解码目前有两种方案:
一是使用专用编解码芯片,比如典型的接收器GS2971,发送器GS2972,优点是简单,比如GS2971接收器直接将SDI解码为并行的YCRCB,GS2972发送器直接将并行的YCRCB编码为SDI视频,缺点是成本较高,可以百度一下GS2971和GS2972的价格;
另一种方案是使用FPGA实现编解码,利用FPGA的GTP/GTX资源实现解串,优点是合理利用了FPGA资源,GTP/GTX资源不用白不用,缺点是操作难度大一些,对FPGA水平要求较高。
本文详细描述了FPGA纯verilog编解码SDI视频,然后任意尺寸缩放拼接输出的实现设计方案,工程代码编译通过后上板调试验证,文章末尾有演示视频,可直接项目移植,适用于在校学生、研究生项目开发,也适用于在职工程师做项目开发,可应用于医疗、军工等行业的数字成像和图像传输领域;
提供完整的、跑通的工程源码和技术支持;
工程源码和技术支持的获取方式放在了文章末尾,请耐心看到最后;
2、SDI理论练习
SDI视频协议比较复杂,我前面已经写过多篇文章,建议先回头看看前面的文章再往下看有利于理解。
1、FPGA使用GTX解码SDI参考链接:直接点击查看
2、FPGA使用GTH解码SDI参考链接:直接点击查看
3、FPGA使用GTX实现SDI接收和发送参考链接:直接点击查看
4、FPGA使用GTX实现SDI光口SFP收发参考链接:直接点击查看
5、FPGA使用GTX实现SDI UDP网络发送参考链接:直接点击查看
6、FPGA使用GTX实现SDI视频任意尺寸缩放参考链接:直接点击查看
3、设计思路和架构
设计思路和架构如下:

本设计的流程为:
FPGA解码3G-SDI输入视频,输入分辨率为1920x1080@30Hz,经硬件解码后,将图像缩小到960X540,并复制为4路视频,模拟4路输入,送到DDR3缓存做视频拼接,最后4路视频拼接显示到1920X1080的显示屏上,具体请看文章末尾的演示视频。。。
SDI摄像头
我用到的SDI摄像头输出视频分辨率1080P@30Hz;根据不同相机有所区别;
Gv8601a单端转差
Gv8601a起到均衡 EQ 功能,这里选用Gv8601a是因为抄袭了Xilinx官方的板子,当然也可以用其他型号器件。
GTX解串
GTX负责解串,将原始SDI视频解为20位的并行数据,我的板子是K7,所以用GTX,如果是A7的板子则用GTP,这里使用GTX并没有调用IP,而是直接调用GTXE2_CHANNEL和GTXE2_COMMON源语,这一点可谓将Xilinx的GTX资源用到了极致水平,值得好好品读,其实调用IP无非也就是把调用源语变得界面化而已,直接调用源语或许理解更为深刻,这一点,在市面上的所谓FPGA教程里都学不到。
SDI解码
调用SMPTE-SDI IP核实现,GTX只是将高速串行数据解为了并行,但并没有解析SDI协议,SMPTE-SDI IP核则完成了SDI协议的解码,去掉了SDI协议中的数据包信息和控制信息,解析出有效的视频数据,详细的SMPTE-SDI IP核接口定义请参考官方的使用手册;
VGA时序恢复
此模块的作用就是解码恢复出hs、vs以及de信号,即恢复正常的VGA视频时序;
要恢复正常的VGA视频时序,首先得看懂下面这张图:
根据这张表即可恢复出图像时序,具体看代码,这里一两句话实在讲不清楚,如果要完全讲明白,写5本书都搓搓有余;
YUV转RGB
这里就简单了,YUV4:4:4转RGB8:8:8,几条公式和几行代码的事儿,属于低端操作;
至此,SDI解码过程就完成了,接下来就是图像输出过程;
图像缩放
图像缩放模块采用纯verilog代码实现,没有任何IP,可在包括国产FPGA在内的各种FPGA平台间任意移植,支持任意比例、任意分辨率、任意尺寸图像缩放,将临近插值和双线性插值两种算法合二为一,通过输入信号高低电平选择其一,本设计选择的双线性插值算法。关于图像缩放,请参考我之前的文章直接点击查看
由于SDI摄像头输入是1920x1080,我的显示器最高只支持1080P显示,所以本设计只能做缩小,不能做放大,为了适应1080P屏幕的视频拼接效果,所以将SDI图像缩小到960X540分辨率。
FDMA图像缓存实现拼接
我常用的FDMA数据缓存架构,详情请参考我之前的文章:直接点击查看
视频拼接方案如下:
输出屏幕分辨率为1920X1080;
输入摄像头分辨率为960X540;
4路输入刚好可以占满整个屏幕;
多路视频的拼接显示原理如下:
以把 2 个摄像头 CAM0 和 CAM1 输出到同一个显示器上为列,为了把 2 个图像显示到 1 个显示器,首先得搞清楚以下关系:
hsize:每 1 行图像实际在内存中占用的有效空间,以 32bit 表示一个像素的时候占用内存大小为 hsize4;
hstride:用于设置每行图像第一个像素的地址,以 32bit 表示一个像素的时候 v_cnt hstride4;
vsize:有效的行;
因此很容易得出 cam0 的每行第一个像素的地址也是 v_cnt hstride4;
同理如果我们需要把 cam1 在 hsize 和 vsize 空间的任何位置显示,我们只要关心 cam1 每一行图像第一个像素的地址,可以用以下公式 v_cnt hstride*4+offset;
uifdma_dbuf 支持 stride 参数设置,stride 参数可以设置输入数据 X(hsize)方向每一行数据的第一个像素到下一个起始像素的间隔地址,利用 stride 参数可以非常方便地摆放输入视频到内存中的排列方式。
根据以上铺垫,每路摄像头缓存的基地址如下:
CAM0:ADDR_BASE=0x80000000;
CAM1:ADDR_BASE=0x80000000+(1920-960)X4;
CAM2:ADDR_BASE=0x80000000+(1080-540)X1920X4;
CAM3:ADDR_BASE=0x80000000+(1080-540)X1920X4+(1920-960)X4;
地址设置完毕后基本就完事儿了;
关于视频拼接的详细设计方案,请参考我之前写的文章:直接点击查看
HDMI驱动
我常用的串口解析架构,纯verilog代码实现HDMI发送,详情请参考我之前的文章:直接点击查看
4、vivado工程详解
开发板:Xilinx Kintex7开发板;
开发环境:vivado2019.1;
输入:3G-SDI摄像头,分辨率1920x1080@30Hz;
输出:HDMI,分辨率1920x1080@60Hz,4路960X540视频拼接显示;
工程Block Design部分如下:
Block Design部分只做到了FDMA图像缓存部分,本设计的FDMA较之前的FDMA做了小幅改动,目的是为了实现动态分辨率的配置。。。
综合后的工程代码架构如下:
资源消耗和功耗预估如下:
5、上板调试验证并演示
直接看演示视频:

SDI-缩放-拼接
6、福利:工程代码的获取
福利:工程代码的获取
代码太大,无法邮箱发送,以某度网盘链接方式发送,
资料获取方式:私,或者文章末尾的V名片。
网盘资料如下:

自定义IP和源码在这个文件夹里:

相关文章:
FPGA解码SDI视频任意尺寸缩放拼接输出 提供工程源码和技术支持
目录1、前言2、SDI理论练习3、设计思路和架构SDI摄像头Gv8601a单端转差GTX解串SDI解码VGA时序恢复YUV转RGB图像缩放FDMA图像缓存实现拼接HDMI驱动4、vivado工程详解5、上板调试验证并演示6、福利:工程代码的获取1、前言 FPGA实现SDI视频编解码目前有两种方案&#…...
线索二叉树结构
线索二叉树结构1.线索二插树的作用2.线索二叉树的定义3.线索二叉树的结构4. 线索二叉树的操作4.1. 建立一棵中序线索二叉树4.2. 在中序线索二叉树上查找任意结点的中序前驱结点4.3. 在中序线索二叉树上查找任意结点的中序后继结点4.4. 在中序线索二叉树上查找任意结点在先序下的…...
6.网络爬虫——BeautifulSoup详讲与实战
网络爬虫——BeautifulSoup详讲与实战BeautifulSoup简介:BS4下载安装BS4解析对象Tag节点遍历节点find_all()与find()find_all()find()豆瓣电影实战前言: 📝📝此专栏文章是专门针对网络爬虫基础,欢迎免费订阅&#…...
Vue:路由管理模式
三种模式 Vue.js 的路由管理有三种模式: Hash 模式(默认):在 URL 中使用 # 符号来管理路由。例如,http://example.com/#/about。这个模式的好处是可以避免浏览器向服务器发送不必要的请求,并且不需要特殊…...
7个最好的PDF编辑器,帮你像编辑Word一样编辑PDF
PDF 是具有数字思维的组织的重要交流工具。提供高效的工作流程和更好的安全性,可以创建重要文档并与客户、同事和员工共享。文档的布局已锁定,因此无论在什么设备上查看,格式都保持不变。这是让每个人保持一致的好方法——尤其是那些使用Micr…...
【数据结构】树的介绍
文章目录前言树的概念及结构树的概念树的表示树在实际中的运用二叉树的概念及结构二叉树的概念现实中的二叉树特殊的二叉树二叉树的性质二叉树的储存结构顺序存储链式存储写在最后前言 🚩本章给大家介绍一下树。树的难度相对于前面的数据结构来说,又高了…...
CoreDNS 性能优化
CoreDNS 作为 Kubernetes 集群的域名解析组件,如果性能不够可能会影响业务,本文介绍几种 CoreDNS 的性能优化手段。合理控制 CoreDNS 副本数考虑以下几种方式:根据集群规模预估 coredns 需要的副本数,直接调整 coredns deployment 的副本数:k…...
前端三剑客常见面试题及其答案
目录 1、什么是 HTML? 2、什么是 CSS? 3、什么是 JavaScript? 4、什么是盒模型? 5、什么是浮动? 6、什么是定位? 7、什么是选择器? 8、什么是事件? 前端的三剑客指的是 HTML…...
【DFS专题】深度优先搜索 “暴搜”优质题单推荐 10道题(C++ | 洛谷 | acwing)
文章目录题单一、模板 [极为重要]全排列DFS组合型DFS指数DFS二、专题烤鸡 (指数BFS)P1088 火星人 【全排列】P1149 火彩棒 [预处理 ]P2036 PERKETP1135 奇怪的电梯 暴力P1036 [NOIP2002 普及组] 选数 (组合)P1596 [USACO10OCT]Lake Counting …...
微信小程序自定义组件生命周期有哪些?
微信小程序自定义组件的生命周期函数分为三类: 创建时执行的生命周期函数、更新时执行的生命周期函数和销毁时执行的生命周期函数。 下面是具体的生命周期函数及其触发时机: 创建时执行的生命周期函数: created:在组件实例刚刚…...
Linux就该这么学(六)
一、从“/”开始 Linux 系统中的文件和目录名称是严格区分大小写的。例如,root、rOOt、rooT 均代表不同的目录,并且文件名称中不得包含斜杠(/)。Linux 系统中的文件存储结构如下图所示。 在 Linux 系统中,最常见的目录…...
目标检测算法——YOLOv5/v7/v8改进结合涨点Trick之Wise-IoU(超越CIOU/SIOU)
超越CIOU/SIOU | Wise-IoU助力YOLO强势涨点!!! 论文题目:Wise-IoU: Bounding Box Regression Loss with Dynamic Focusing Mechanism 论文链接:https://arxiv.org/abs/2301.10051 近年来的研究大多假设训练数据中的…...
【蓝桥杯选拔赛真题39】python输出数字组合 青少年组蓝桥杯python 选拔赛STEMA比赛真题解析
目录 python输出数字组合 一、题目要求 1、编程实现 2、输入输出...
网络安全工程师做什么?
网络安全很复杂。数字化转型、远程工作和不断变化的威胁形势需要不同的工具和不同的技能组合。 系统必须到位以保护端点、身份和无边界网络边界。负责处理这种复杂安全基础设施的工作角色是网络安全工程师。 简而言之,网络安全工程师是负责设计和实施组织安全系…...
总结:K8S运维常用命令
一、部署./kubectl apply -f biz-healing-pod.yaml 二、查看部署的资源1、podkubectl get pod -A:获取所有pod没有IP?用-o wide参数看详细信息:./kubectl get pod -n deepflow -o wide2、service查看hubble-manager命名空间下有哪些service/d…...
你是真的“C”——进行动态内存分配库函数的使用详解
你是真的“C”——申请动态空间库函数的使用详解😎前言🙌一、为什么需要动态内存分配?💞free 函数😘malloc 库函数😘calloc 库函数😘realloc 库函数😘总结撒花💞…...
Python|蓝桥杯进阶第五卷——数论
欢迎交流学习~~ 专栏: 蓝桥杯Python组刷题日寄 蓝桥杯进阶系列: 🏆 Python | 蓝桥杯进阶第一卷——字符串 🔎 Python | 蓝桥杯进阶第二卷——贪心 💝 Python | 蓝桥杯进阶第三卷——动态规划 ✈️ Python | 蓝桥杯进阶…...
用Python实现单例模式
什么是单例模式单例模式是指在内存中只会创建且仅创建一次对象的设计模式。在程序中多次使用同一个对象且作用相同时,为了防止频繁地创建对象使得内存飙升,单例模式可以让程序仅在内存中创建一个对象,让所有需要调用的地方都共享这一单例对象…...
交叉编译说明:工具链安装和环境变量配置
目录 一 简单了解交叉编译 ① 什么是交叉编译 ② 为什么需要交叉编译 ③ 宿主机和目标机 二 搭建交叉编译工作环境 ① 安装工具链 ② 配置环境变量 ● 配置临时环境变量 ● 配置永久环境变量 三 交叉编译宿主机和目标机 ● 宿主机编译生成的可执行文件下载到目…...
文件上传的多种利用方式
文件上传的多种利用方式 文件上传漏洞除了可以通过绕过检测进行webshell的上传之外,还有多种其它的漏洞可以进行测试。 XSS漏洞 文件名造成的XSS 当上传任何文件时,文件名肯定是会反显示在网页上,可以使用 XSS Payload做文件名尝试将其上传到…...
根据万维钢·精英日课6的内容,使用AI(2025)可以参考以下方法:
根据万维钢精英日课6的内容,使用AI(2025)可以参考以下方法: 四个洞见 模型已经比人聪明:以ChatGPT o3为代表的AI非常强大,能运用高级理论解释道理、引用最新学术论文,生成对顶尖科学家都有用的…...
python执行测试用例,allure报乱码且未成功生成报告
allure执行测试用例时显示乱码:‘allure’ �����ڲ����ⲿ���Ҳ���ǿ�&am…...
Springboot社区养老保险系统小程序
一、前言 随着我国经济迅速发展,人们对手机的需求越来越大,各种手机软件也都在被广泛应用,但是对于手机进行数据信息管理,对于手机的各种软件也是备受用户的喜爱,社区养老保险系统小程序被用户普遍使用,为方…...
android RelativeLayout布局
<?xml version"1.0" encoding"utf-8"?> <RelativeLayout xmlns:android"http://schemas.android.com/apk/res/android"android:layout_width"match_parent"android:layout_height"match_parent"android:gravity&…...
uniapp 小程序 学习(一)
利用Hbuilder 创建项目 运行到内置浏览器看效果 下载微信小程序 安装到Hbuilder 下载地址 :开发者工具默认安装 设置服务端口号 在Hbuilder中设置微信小程序 配置 找到运行设置,将微信开发者工具放入到Hbuilder中, 打开后出现 如下 bug 解…...
高防服务器价格高原因分析
高防服务器的价格较高,主要是由于其特殊的防御机制、硬件配置、运营维护等多方面的综合成本。以下从技术、资源和服务三个维度详细解析高防服务器昂贵的原因: 一、硬件与技术投入 大带宽需求 DDoS攻击通过占用大量带宽资源瘫痪目标服务器,因此…...
JDK 17 序列化是怎么回事
如何序列化?其实很简单,就是根据每个类型,用工厂类调用。逐个完成。 没什么漂亮的代码,只有有效、稳定的代码。 代码中调用toJson toJson 代码 mapper.writeValueAsString ObjectMapper DefaultSerializerProvider 一堆实…...
基于Uniapp的HarmonyOS 5.0体育应用开发攻略
一、技术架构设计 1.混合开发框架选型 (1)使用Uniapp 3.8版本支持ArkTS编译 (2)通过uni-harmony插件调用原生能力 (3)分层架构设计: graph TDA[UI层] -->|Vue语法| B(Uniapp框架)B --&g…...
【Java】Ajax 技术详解
文章目录 1. Filter 过滤器1.1 Filter 概述1.2 Filter 快速入门开发步骤:1.3 Filter 执行流程1.4 Filter 拦截路径配置1.5 过滤器链2. Listener 监听器2.1 Listener 概述2.2 ServletContextListener3. Ajax 技术3.1 Ajax 概述3.2 Ajax 快速入门服务端实现:客户端实现:4. Axi…...
GB/T 43887-2024 核级柔性石墨板材检测
核级柔性石墨板材是指以可膨胀石墨为原料、未经改性和增强、用于核工业的核级柔性石墨板材。 GB/T 43887-2024核级柔性石墨板材检测检测指标: 测试项目 测试标准 外观 GB/T 43887 尺寸偏差 GB/T 43887 化学成分 GB/T 43887 密度偏差 GB/T 43887 拉伸强度…...
