当前位置: 首页 > news >正文

网站后台安装/关键字搜索软件

网站后台安装,关键字搜索软件,做网站的公司应该做收录嘛,哪个网站做税务登记文章目录 简述代码重构要点 数学模型、运行结果数据构建与分批模型封装运行测试 简述 python使用 数值微分法 求梯度,实现单层线性回归-CSDN博客 python使用 计算图(forward与backward) 求梯度,实现单层线性回归-CSDN博客 数值微分…

文章目录

    • 简述
      • 代码重构要点
    • 数学模型、运行结果
    • 数据构建与分批
    • 模型封装
    • 运行测试

简述

python使用 数值微分法 求梯度,实现单层线性回归-CSDN博客
python使用 计算图(forward与backward) 求梯度,实现单层线性回归-CSDN博客
数值微分求梯度、计算图求梯度,实现单层线性回归 模型速度差异及损失率比对-CSDN博客

上述文章都是使用python来实现求梯度的,是为了学习原理,实际使用上,pytorch实现了自动求导,原理也是(基于计算图的)链式求导,本文还就 “单层线性回归” 问题用pytorch实现。

代码重构要点

1.nn.Moudle

torch.nn.Module的继承、nn.Sequentialnn.Linear
torch.nn — PyTorch 2.4 documentation

对于nn.Sequential的理解可以看python使用 计算图(forward与backward) 求梯度,实现单层线性回归-CSDN博客一文代码的模型初始化与计算部分,如图:

在这里插入图片描述

nn.Sequential可以说是把图中标注的代码封装起来了,并且可以放多层。

2.torch.optim优化器

本例中使用随机梯度下降torch.optim.SGD()
torch.optim — PyTorch 2.4 documentation
SGD — PyTorch 2.4 documentation

3.数据构建与数据加载

data.TensorDatasetdata.DataLoader,之前为了实现数据分批,手动实现了data_iter,现在可以直接调用pytorch的data.DataLoader

对于data.DataLoader的参数num_workers,默认值为0,即在主线程中处理,但设置其它值时存在反而速度变慢的情况,以后再讨论。

数学模型、运行结果

y = X W + b y = XW + b y=XW+b

y为标量,X列数为2. 损失函数使用均方误差。

运行结果:

在这里插入图片描述

在这里插入图片描述

数据构建与分批

def build_data(weights, bias, num_examples):  x = torch.randn(num_examples, len(weights))  y = x.matmul(weights) + bias  # 给y加个噪声  y += torch.randn(1)  return x, y  def load_array(data_arrays, batch_size, num_workers=0, is_train=True):  """构造一个PyTorch数据迭代器"""  dataset = data.TensorDataset(*data_arrays)  return data.DataLoader(dataset, batch_size=batch_size, num_workers=num_workers, shuffle=is_train)

模型封装

class TorchLinearNet(torch.nn.Module):  def __init__(self):  super(TorchLinearNet, self).__init__()  model = nn.Sequential(Linear(in_features=2, out_features=1))  self.model = model  self.criterion = nn.MSELoss()  def predict(self, x):  return self.model(x)  def loss(self, y_predict, y):  return self.criterion(y_predict, y)

运行测试

if __name__ == '__main__':  start = time.perf_counter()  true_w1 = torch.rand(2, 1)  true_b1 = torch.rand(1)  x_train, y_train = build_data(true_w1, true_b1, 5000)  net = TorchLinearNet()  print(net)  init_loss = net.loss(net.predict(x_train), y_train)  loss_history = list()  loss_history.append(init_loss.item())  num_epochs = 3  batch_size = 50  learning_rate = 0.01  dataloader_workers = 6  data_loader = load_array((x_train, y_train), batch_size=batch_size, is_train=True)  optimizer = torch.optim.SGD(net.parameters(), lr=learning_rate)  for epoch in range(num_epochs):  # running_loss = 0.0  for x, y in data_loader:  y_pred = net.predict(x)  loss = net.loss(y_pred, y)  optimizer.zero_grad()  loss.backward()  optimizer.step()  # running_loss = running_loss + loss.item()  loss_history.append(loss.item())  end = time.perf_counter()  print(f"运行时间(不含绘图时间):{(end - start) * 1000}毫秒\n")  plt.title("pytorch实现单层线性回归模型", fontproperties="STSong")  plt.xlabel("epoch")  plt.ylabel("loss")  plt.plot(loss_history, linestyle='dotted')  plt.show()  print(f'初始损失值:{init_loss}')  print(f'最后一次损失值:{loss_history[-1]}\n')  print(f'正确参数: true_w1={true_w1}, true_b1={true_b1}')  print(f'预测参数:{net.model.state_dict()}')

相关文章:

pytorch实现单层线性回归模型

文章目录 简述代码重构要点 数学模型、运行结果数据构建与分批模型封装运行测试 简述 python使用 数值微分法 求梯度,实现单层线性回归-CSDN博客 python使用 计算图(forward与backward) 求梯度,实现单层线性回归-CSDN博客 数值微分…...

智能小家电能否利用亚马逊VC搭上跨境快车?——WAYLI威利跨境助力商家

智能小家电行业在全球化背景下,正迎来前所未有的发展机遇。亚马逊为品牌商和制造商提供的一站式服务平台,为智能小家电企业提供了搭乘跨境快车、拓展国际市场的绝佳机会。 首先,亚马逊VC平台能够帮助智能小家电企业简化与亚马逊的合作流程&am…...

顺丰科技25届秋季校园招聘常见问题答疑及校招网申测评笔试题型分析SHL题库Verify测评

Q:顺丰科技2025届校园招聘面向对象是? A:2025届应届毕业生,毕业时间段为2024年10月1日至2025年9月30日(不满足以上毕业时间的同学可以关注顺丰科技社会招聘或实习生招聘)。 Q:我可以投递几个岗…...

深入理解 Kibana 配置文件:一份详尽的指南

Kibana 是一个强大的数据可视化平台,它允许用户通过 Elasticsearch 轻松地探索和分析数据。Kibana 的配置文件 kibana.yml 是定制和优化 Kibana 行为的关键。在这篇博客中,我们将深入探讨 kibana.yml 文件中的各个配置项,并提供示例说明。 服…...

算法的学习笔记—链表中倒数第 K 个结点(牛客JZ22)

😀前言 在编程过程中,链表是一种常见的数据结构,它能够高效地进行插入和删除操作。然而,遍历链表并找到特定节点是一个典型的挑战,尤其是当我们需要找到链表中倒数第 K 个节点时。本文将详细介绍如何使用双指针技术来解…...

聊聊场景及场景测试

在我们进行测试过程中,有一种黑盒测试叫场景测试,我们完全是从用户的角度去理解系统,从而可以挖掘用户的隐含需求。 场景是指用户会使用这个系统来完成预定目标的所有情况的集合。 场景本身也代表了用户的需求,所以我们可以认为…...

Spring Web MVC入门(中)

1. 请求 访问不同的路径, 就是发送不同的请求. 在发送请求时, 可能会带⼀些参数, 所以学习Spring的请求, 主要 是学习如何传递参数到后端以及后端如何接收. 传递参数, 咱们主要是使⽤浏览器和Postman来模拟; 1.1 传递单个参数 接收单个参数,在Spring MV…...

Django后端架构开发:后台管理与会话技术详解

🌟 Django后端架构开发:后台管理与会话技术详解 🔹 后台管理:自定义模型类 Django的后台管理系统提供了强大的模型管理功能,你可以通过自定义模型类来控制模型在后台管理界面的显示和操作。自定义模型类通过继承admin…...

挑战Infiniband, 爆改Ethernet(2)

挑战Infiniband, 爆改Ethernet之物理层 前面说过UE为了挑战Infiniband在AI集群和HPC领域的优势地位,计划爆改以太网技术,以适应AI和HPC集群对高性能、可扩展网络的需求。正如UE联盟关于愿景的说明中宣称的:”提供一个完整的架构,通…...

Postman文件上传接口测试

接口介绍 返回示例 测试步骤 1.添加一个新请求,修改请求名,填写URL,选择请求方式 2.将剩下的media参数放在请求body里,选择form-data,选择key右边的类型为file类型,就会出现选择文件的按钮Select Files&a…...

stm32入门学习14-电源控制

有时候我们的程序中有些触发执行条件,有时这些触发频率很少,我们的程序就一直在循环,这样就很浪费电,我们可以通过PWR电源控制来实现低功耗模式,即只有在触发时才执行程序,其余时间可以关闭一些没必要的设备…...

[C++][opencv]基于opencv实现photoshop算法色相和饱和度调整

【测试环境】 vs2019 opencv4.8.0 【效果演示】 【核心实现代码】 HSL.hpp #ifndef OPENCV2_PS_HSL_HPP_ #define OPENCV2_PS_HSL_HPP_#include "opencv2/core.hpp" using namespace cv;namespace cv {enum HSL_COLOR {HSL_ALL,HSL_RED,HSL_YELLOW,HSL_GREEN,HS…...

Github 2024-08-16Java开源项目日报 Top10

根据Github Trendings的统计,今日(2024-08-16统计)共有10个项目上榜。根据开发语言中项目的数量,汇总情况如下: 开发语言项目数量Java项目10TypeScript项目1Ruby项目1Apache Dubbo: 高性能的Java开源RPC框架 创建周期:4441 天开发语言:Java协议类型:Apache License 2.0St…...

AI学习记录 - torch 的 matmul和dot的关联,也就是点乘和点积的联系

有用大佬们点点赞 1、两个一维向量点积 ,求 词A 与 词A 之间的关联度 2、两个词向量之间求关联度,求 : 词A 与 词A 的关联度 5 词A 与 词B 的关联度 11 词B 与 词A 的关联度 11 词B 与 词B 的关联度 25 刚刚好和矩阵乘法符合: 3、什么是…...

leetcode 885. Spiral Matrix III

题目链接 You start at the cell (rStart, cStart) of an rows x cols grid facing east. The northwest corner is at the first row and column in the grid, and the southeast corner is at the last row and column. You will walk in a clockwise spiral shape to visi…...

mysql windows安装与远程连接配置

安装包在主页资源中 一、安装(此安装教程为“mysql-installer-community-5.7.41.0.msi”安装教程,安装到win10环境) 保持默认选项,点击”Next“。 点开第一行加号展开一路展开找到“MySQL Server 5,7,41 - X64”点击选中点击一下中间只想右侧的箭头看到…...

子网掩码是什么以及子网掩码相关计算

子网掩码 (Subnet Mask) 又称网络掩码 (Netmask),告知主机或路由设备,地址的哪一部分是网络号,包括子网的网络号部分,哪一部分是主机号部分。 子网掩码使用与IP地址相同的编址格式,即32 bit—4个8位组的32位长格式。…...

仿RabbitMQ实现消息队列

前言:本项目是仿照RabbitMQ并基于SpringBoot Mybatis SQLite3实现的消息队列,该项目实现了MQ的核心功能:生产者、消费者、中间人、发布、订阅等。 源码链接:仿Rabbit MQ实现消息队列 目录 前言:本项目是仿照Rabbi…...

SpringBoot教程(二十三) | SpringBoot实现分布式定时任务之xxl-job

SpringBoot教程(二十三) | SpringBoot实现分布式定时任务之xxl-job 简介一、前置条件:需要搭建调度中心1、先下载调度中心源码2、修改配置文件3、启动项目4、进行访问5、打包部署(上正式) 二、SpringBoot集成Xxl-Job1.…...

微前端架构的数据持久化策略与实践

微前端架构通过将一个大型前端应用拆分成多个小型、自治的子应用,提升了开发效率和应用的可维护性。然而,数据持久化作为应用的基础需求,在微前端架构中实现起来面临着一些挑战。本文将详细介绍在微前端架构下实现数据持久化的策略、技术和最…...

讲解 狼人杀中的买单双是什么意思

买单双这个概念通常出现在有第三方的板子中 比如 咒狐板子 丘比特板子 咒狐板子 第一天狼队只要推掉预言家 第二天就可以与咒狐协商绑票 推出其他好人 以及丘比特板子 如果拉出一个人狼链 那么如果孤独再连一个狼人 那么 狼队第一天就可以直接派人上去拿警徽,这样…...

回归分析系列5-贝叶斯回归

07贝叶斯回归 7.1 简介 贝叶斯回归将贝叶斯统计的思想应用于回归分析中,通过先验分布和似然函数来推断后验分布。在贝叶斯回归中,模型参数被视为随机变量,并且有自己的分布。通过贝叶斯公式,可以更新这些参数的分布,…...

oracle 数据中lsnrctl 是干啥的

突然发现lsnrctl stop 之后,依然可以启动数据库 就感觉怪怪的,一直以为这个是数据库的守护进程,原来不是。。。。 lsnrctl 是 Oracle 监听器控制实用程序的命令行界面工具,用于管理 Oracle Net 服务监听器。监听器是 Oracle 网络…...

Linux进程--进程地址空间

文章目录 一、进程地址空间1.想当然的内存2.实际的内存1.什么是地址空间2.地址空间和内存3.为什么要区分两种内存 一、进程地址空间 1.想当然的内存 我们在之前的学习中了解过内存的概念,所以变量都要存在内存中我们的程序才能跑起来,那么我们肯定也见…...

C语言传递指针给函数

C 语言允许您传递指针给函数,只需要简单地声明函数参数为指针类型即可。 下面的实例中,我们传递一个无符号的 long 型指针给函数,并在函数内改变这个值 实例1:获取系统的时间值 能接受指针作为参数的函数,也能接受数…...

探索 Kubernetes 持久化存储之 Rook Ceph 初窥门径

在 Kubernetes 生态系统中,持久化存储是支撑业务应用稳定运行的基石,对于维护整个系统的健壮性至关重要。对于选择自主搭建 Kubernetes 集群的运维架构师来说,挑选合适的后端持久化存储解决方案是关键的选型决策。目前,Ceph、Glus…...

今日(2024 年 8 月 13 日)科技新闻

我国成功发射卫星互联网高轨卫星:该卫星的成功发射将助力我国卫星互联网的发展。中国首台中子全散射谱仪运行 3 年成果丰硕:由粤港科技合作打造的多物理谱仪,在中国散裂中子源上运行 3 年来,已完成 300 多项用户实验。该谱仪的关键…...

Unity大场景切换进行异步加载时,如何设计加载进度条,并配置滑动条按照的曲线给定的速率滑动

一、异步加载场景的过程 1、异步加载场景用到的API LoadSceneAsync 2、异步加载的参数说明 (1)默认参数:SceneManagement.LoadSceneAsync(“SceneName”); AsyncOperation task SceneManager.LoadSceneAsync("SceneName");&a…...

Selenium + Python 自动化测试16(Python基础复习)

我们的目标是:按照这一套资料学习下来,大家可以独立完成自动化测试的任务。 上一篇我们讨论了使用模块化测试的测试模型,从某一程度也反映出熟练掌握一门编程语言的重要性。 为了后续进一步深入学习。本篇文章主要做下Python基础知识的复习。…...

2024新型数字政府综合解决方案(六)

新型数字政府综合解决方案通过融合人工智能、大数据、区块链和云计算技术,构建了一个全方位智能化的政务平台,旨在提升政府服务的效率、透明度和公众参与度。该方案实现了跨部门的数据互联互通与实时更新,利用先进的数据分析和自动化处理技术…...