Python实现词频统计
词频统计是自然语言处理的基本任务,针对一段句子、一篇文章或一组文章,统计文章中每个单词出现的次数,在此基础上发现文章的主题词、热词。
1. 单句的词频统计
思路:首先定义一个空字典my_dict,然后遍历文章(或句子),针对每个单词判断是否在字典my_dict的key中,不存在就将该单词当作my_dict的key,并设置对应的value值为1;若已存在,则将对应的value值+1。
#统计单句中每个单词出现的次数
news = "Xi, also general secretary of the Communist Party of China (CPC) Central Committee and chairman of the Central Military Commission, made the remarks while attending a voluntary tree-planting activity in the Chinese capital's southern district of Daxing."
def couWord(news_list): ##定义计数函数 输入:句子的单词列表 输出:单词-次数 的字典my_dict = {} #空字典 来保存单词出现的次数for v in news_list:if my_dict.get(v):my_dict[v] += 1else:my_dict[v] = 1return my_dict
print(couWord(news.split ()))
输出
{‘Xi,’: 1, ‘also’: 1, ‘general’: 1, ‘secretary’: 1, ‘of’: 4, ‘the’: 4, ‘Communist’: 1, ‘Party’: 1, ‘China’: 1, ‘(CPC)’: 1, ‘Central’: 2, ‘Committee’: 1, ‘and’: 1, ‘chairman’: 1, ‘Military’: 1, ‘Commission,’: 1, ‘made’: 1, ‘remarks’: 1, ‘while’: 1, ‘attending’: 1, ‘a’: 1, ‘voluntary’: 1, ‘tree-planting’: 1, ‘activity’: 1, ‘in’: 1, ‘Chinese’: 1, “capital’s”: 1, ‘southern’: 1, ‘district’: 1, ‘Daxing.’: 1}
以上通过couWord方法实现了词频的统计,但是存在以下两个问题。
(1)未去除stopword
输出结果中保护’also’、‘and’、'in’等stopword(停止词),停止词语与文章主题关系不大,需要在词频统计等各类处理中将其过滤掉。
(2)未根据出现次数进行排序
根据每个单词出现次数进行排序后,可以直观而有效的发现文章主题词或热词。
改进后的couWord函数如下:
def couWord(news_list,word_list,N):#输入 文章单词的列表 停止词列表 输出:Top N的单词my_dict = {} #空字典 来保存单词出现的次数for v in news_list:if (v not in word_list): # 判断是否在停止词列表中if my_dict.get(v):my_dict[v] += 1else:my_dict[v] = 1topWord = sorted(zip(my_dict.values(),my_dict.keys()),reverse=True)[:N] return topWord
加载英文停止词列表:
stopPath = r'Data/stopword.txt'
with open(stopPath,encoding = 'utf-8') as file:word_list = file.read().split() #通过read()返回一个字符串函数,再将其转换成列表
print(couWord(news.split(),word_list,5))
输出
[(2, ‘Central’), (1, ‘voluntary’), (1, ‘tree-planting’), (1, ‘southern’), (1, ‘secretary’)]
2. 文章的词频统计
(1)单篇文章词频统计
通过定义读取文章的函数,对其进行大小写转换等处理,形成输入文章的单词列表。
def readFile(filePath): #输入: 文件路径 输出:字符串列表with open(filePath,encoding = 'utf-8') as file:txt = file.read().lower() #返回一个字符串,都是小写myTxt = txt.split() #转换成列表 return myTxt
filePath = r'Data/news/1.txt'
new_list = readFile(filePath) #读取文件
print(couWord(new_list,word_list,5))
输出
[(17, ‘rights’), (14, ‘human’), (8, ‘united’), (7, ‘china’), (6, ‘resolution’)]
(2)多篇文章词频统计
需要使用os.listdir方法读取文件夹下的文件列表,然后对文件逐一进行处理。
import os
folderPath = r'Data/news' #文件夹路径
tmpFile = os.listdir(folderPath)
allNews = []
for file in tmpFile: #读取文件newsfile = folderPath + '//' + file #拼接完整的文件路径 \\ 转义字符allNews += readFile(newsfile) #把所有的字符串列表拼接到allText中print(couWord(allNews,word_list,5))
输出
[(465, ‘china’), (323, ‘chinese’), (227, ‘xi’), (196, “china’s”), (134, ‘global’)]
(3)中文文章的处理
对于中文文章的词频统计,首先要使用jieba等分词器对文章进行分词,并且加载中文的停止词列表,再进行词频统计。
相关文章:
Python实现词频统计
词频统计是自然语言处理的基本任务,针对一段句子、一篇文章或一组文章,统计文章中每个单词出现的次数,在此基础上发现文章的主题词、热词。 1. 单句的词频统计 思路:首先定义一个空字典my_dict,然后遍历文章…...
微信小程序面试题(day08)
文章目录微信小程序自定义组件的使用?微信小程序事件通道的使用?微信小程序如何使用vant组件库?微信小程序自定义组件父传子子传父?微信小程序自定义组件生命周期有哪些?微信小程序授权登录流程?web-view。…...
最强的Python可视化神器,你有用过么?
数据分析离不开数据可视化,我们最常用的就是Pandas,Matplotlib,Pyecharts当然还有Tableau,看到一篇文章介绍Plotly制图后我也跃跃欲试,查看了相关资料开始尝试用它制图。 1、Plotly Plotly是一款用来做数据分析和可视…...
Ubuntu使用vnc远程桌面【远程内网穿透】
文章目录1.前言2.两台互联电脑的设置2.1 Windows安装VNC2.2 Ubuntu安装VNC2.3.Ubuntu安装cpolar3.Cpolar设置3.1 Cpolar云端设置3.2.Cpolar本地设置4.公网访问测试5.结语1.前言 记得笔者刚刚开始接触电脑时,还是win95/98的时代,那时的电脑桌面刚迈入图形…...
【C++】map、set、multimap、multiset的介绍和使用
我讨厌世俗,也耐得住孤独。 文章目录一、键值对二、树形结构的关联式容器1.set1.1 set的介绍1.2 set的使用1.3 multiset的使用2.map2.1 map的介绍2.2 map的使用2.3 multimap的使用三、两道OJ题1.前K个高频单词(less<T>小于号是小的在左面升序&…...
css学习14(多媒体查询)
目录 多媒体查询 语法 示例代码 通用媒体查询 媒体功能参考列表 多媒体查询 CSS的媒体查询是一种CSS的技术,它可以根据不同的设备类型、屏幕尺寸、方向、分辨率等条件来应用不同的CSS样式,从而为不同的设备和屏幕提供最佳的浏览体验。这样ÿ…...
【C++进阶】C++11(中)左值引用和右值引用
文章目录左值引用左值引用的概念左值引用的使用右值引用右值引用的概念右值引用的使用左右值相互引用左值引用对右值进行引用右值引用对左值进行引用右值引用使用场景和意义左值引用的优势左值引用的短板右值引用的优势完美转发模板万能引用完美转发实际运用场景左值引用 左值…...
Python中的生成器【generator】总结,看看你掌握了没?
人生苦短,我用python python 安装包资料:点击此处跳转文末名片获取 1.实现generator的两种方式 python中的generator保存的是算法, 真正需要计算出值的时候才会去往下计算出值。 它是一种惰性计算(lazy evaluation)。 要创建一个…...
MD5加密竟然不安全,应届生表示无法理解?
前言 近日公司的一个应届生问我,他做的一个毕业设计密码是MD5加密存储的,为什么密码我帮他调试的时候,我能猜出来明文是什么? 第六感,是后端研发的第六感! 正文 示例,有个系统,前…...
【Linux】虚拟地址空间
进程地址空间一、引入二、虚拟地址与物理内存的联系三、为什么要有虚拟地址空间一、引入 对于C/C程序,我们眼中的内存是这样的: 我们利用这种对于与内存的理解看一下下面这段代码: 运行结果: 观察父子进程中 val 变量的值&…...
四平方和题解(二分习题)
四平方和 暴力做法 Y总暴力做法,蓝桥云里能通过所有数据 总结:暴力也分好坏,下面这份代码就是写的好的暴力 如何写好暴力:1. 按组合枚举 2. 写好循环结束条件,没必要循环那么多次 #include<iostream> #include<cmath>…...
一篇文章搞定js正则表达式
我们测试正则表达式是否正确的方法有很多,例如通过正则表达式找到拼配的字符串: 在vscode编辑器中点击搜索框中的第三个按钮就可以实现: 或者 在浏览器中的控制台也可以实现: 我们可以通过下面的在线网站来测试你写的正则是否正确…...
[数据结构] 用两个队列实现栈详解
文章目录 一、队列实现栈的特点分析 1、1 具体分析 1、2 整体概括 二、队列模拟实现栈代码的实现 2、1 手撕 队列 代码 queue.h queue.c 2、2 用队列模拟实现栈代码 三、总结 🙋♂️ 作者:Ggggggtm 🙋♂️ 👀 专栏࿱…...
官宣|Apache Flink 1.17 发布公告
Apache Flink PMC(项目管理委员)很高兴地宣布发布 Apache Flink 1.17.0。Apache Flink 是领先的流处理标准,流批统一的数据处理概念在越来越多的公司中得到认可。得益于我们出色的社区和优秀的贡献者,Apache Flink 在 Apache 社区…...
动态内存管理+动态通讯录【C进阶】
文章目录为什么存在动态内存分配❓👉动态内存函数👈malloc&freecallocrealloc❌常见的动态内存错误❌练习题🫠C/C程序的内存开辟🤔柔性数组柔性数组的特点柔性数组的优势:star:动态通讯录:star:初始化添加销毁为什么存在动态内…...
基于pytorch+Resnet101加GPT搭建AI玩王者荣耀
本源码模型主要用了SamLynnEvans Transformer 的源码的解码部分。以及pytorch自带的预训练模型"resnet101-5d3b4d8f.pth"本资源整理自网络,源地址:https://github.com/FengQuanLi/ResnetGPT注意运行本代码需要注意以下几点 注意!&a…...
多线程控制讲解与代码实现
多线程控制 回顾一下线程的概念 线程是CPU调度的基本单位,进程是承担分配系统资源的基本单位。linux在设计上并没有给线程专门设计数据结构,而是直接复用PCB的数据结构。每个新线程(task_struct{}中有个指针都指向虚拟内存mm_struct结构&am…...
清晰概括:进程与线程间的区别的联系
相关阅读: 🔗通俗简介:操作系统之进程的管理与调度🔗如何使用 jconsole 查看Java进程中线程的详细信息? 目录 一、进程与线程 1、进程 2、线程 二、进程与线程之间的区别和联系 1、区别 2、联系 一、进程与线程 …...
自定义类型 (结构体)
文章目录📬结构体的声明🔎1.结构的基础知识🔎2.结构的声明🔎3.特殊的声明🔎4.结构的自引用🔎5.结构体变量的定义和初始化🔎6.结构体内存对齐🔎7.修改默认对齐数🔎8.结构体…...
第14届蓝桥杯STEMA测评真题剖析-2023年3月12日Scratch编程初中级组
[导读]:超平老师的《Scratch蓝桥杯真题解析100讲》已经全部完成,后续会不定期解读蓝桥杯真题,这是Scratch蓝桥杯真题解析第113讲。 蓝桥杯选拔赛现已更名为STEMA,即STEM 能力测试,是蓝桥杯大赛组委会与美国普林斯顿多…...
相机Camera日志实例分析之二:相机Camx【专业模式开启直方图拍照】单帧流程日志详解
【关注我,后续持续新增专题博文,谢谢!!!】 上一篇我们讲了: 这一篇我们开始讲: 目录 一、场景操作步骤 二、日志基础关键字分级如下 三、场景日志如下: 一、场景操作步骤 操作步…...
【Redis技术进阶之路】「原理分析系列开篇」分析客户端和服务端网络诵信交互实现(服务端执行命令请求的过程 - 初始化服务器)
服务端执行命令请求的过程 【专栏简介】【技术大纲】【专栏目标】【目标人群】1. Redis爱好者与社区成员2. 后端开发和系统架构师3. 计算机专业的本科生及研究生 初始化服务器1. 初始化服务器状态结构初始化RedisServer变量 2. 加载相关系统配置和用户配置参数定制化配置参数案…...
HTML 列表、表格、表单
1 列表标签 作用:布局内容排列整齐的区域 列表分类:无序列表、有序列表、定义列表。 例如: 1.1 无序列表 标签:ul 嵌套 li,ul是无序列表,li是列表条目。 注意事项: ul 标签里面只能包裹 li…...
Neo4j 集群管理:原理、技术与最佳实践深度解析
Neo4j 的集群技术是其企业级高可用性、可扩展性和容错能力的核心。通过深入分析官方文档,本文将系统阐述其集群管理的核心原理、关键技术、实用技巧和行业最佳实践。 Neo4j 的 Causal Clustering 架构提供了一个强大而灵活的基石,用于构建高可用、可扩展且一致的图数据库服务…...
鱼香ros docker配置镜像报错:https://registry-1.docker.io/v2/
使用鱼香ros一件安装docker时的https://registry-1.docker.io/v2/问题 一键安装指令 wget http://fishros.com/install -O fishros && . fishros出现问题:docker pull 失败 网络不同,需要使用镜像源 按照如下步骤操作 sudo vi /etc/docker/dae…...
Python Ovito统计金刚石结构数量
大家好,我是小马老师。 本文介绍python ovito方法统计金刚石结构的方法。 Ovito Identify diamond structure命令可以识别和统计金刚石结构,但是无法直接输出结构的变化情况。 本文使用python调用ovito包的方法,可以持续统计各步的金刚石结构,具体代码如下: from ovito…...
WebRTC从入门到实践 - 零基础教程
WebRTC从入门到实践 - 零基础教程 目录 WebRTC简介 基础概念 工作原理 开发环境搭建 基础实践 三个实战案例 常见问题解答 1. WebRTC简介 1.1 什么是WebRTC? WebRTC(Web Real-Time Communication)是一个支持网页浏览器进行实时语音…...
TSN交换机正在重构工业网络,PROFINET和EtherCAT会被取代吗?
在工业自动化持续演进的今天,通信网络的角色正变得愈发关键。 2025年6月6日,为期三天的华南国际工业博览会在深圳国际会展中心(宝安)圆满落幕。作为国内工业通信领域的技术型企业,光路科技(Fiberroad&…...
tomcat指定使用的jdk版本
说明 有时候需要对tomcat配置指定的jdk版本号,此时,我们可以通过以下方式进行配置 设置方式 找到tomcat的bin目录中的setclasspath.bat。如果是linux系统则是setclasspath.sh set JAVA_HOMEC:\Program Files\Java\jdk8 set JRE_HOMEC:\Program Files…...
9-Oracle 23 ai Vector Search 特性 知识准备
很多小伙伴是不是参加了 免费认证课程(限时至2025/5/15) Oracle AI Vector Search 1Z0-184-25考试,都顺利拿到certified了没。 各行各业的AI 大模型的到来,传统的数据库中的SQL还能不能打,结构化和非结构的话数据如何和…...
