当前位置: 首页 > news >正文

ES+FileBeat+Kibana日志采集搭建体验

1.环境准备

   需要linux操作系统,并安装了docker环境

   此处使用虚拟机演示。(虚拟机和docker看参考我之前写的文章)

    VirtualBox安装Oracle Linux 7.9全流程-CSDN博客

    VirtualBox上的Oracle Linux虚拟机安装Docker全流程-CSDN博客

  简单演示搭建ES+FileBeat+Kibana进行日志采集、上报、展示、搜索流程。

 2.创建elk网络

    docker network create elk

3.docker拉取并启动ES

docker run -d \

   --name=elasticsearch \

   -v es-data:/usr/share/elasticsearch/data \

   -e ES_JAVA_OPTS="-Xms256m -Xmx512m"  \

   -e "discovery.type=single-node" \

   -e "xpack.security.enabled=false" \

   --net elk \

   -p 9200:9200 -p 9300:9300 \

docker.elastic.co/elasticsearch/elasticsearch:8.6.2

镜像比较大,执行需要耐心等待下。

Elasticsearch容器启动成功。

访问http://192.168.56.103:9200 显示如下

4.docker拉取并启动kibana

docker run -d \

   --name=kibana \

   -e ELASTICSEARCH_HOSTS=http://elasticsearch:9200 \

   -e I18N_LOCALE=zh-CN \

   --net elk \

   -p 5601:5601 \

docker.elastic.co/kibana/kibana:8.6.2

 kibana容器启动成功

 #查看运行的容器

 docker ps -a

 #观察kibana容器日志输出

 docker logs kibana --tail 20  -f

访问http://192.168.56.103:5601

5.安装filebeat日志采集

 5.1 安装filebeat

wget  https://artifacts.elastic.co/downloads/beats/filebeat/filebeat-8.6.2-x86_64.rpm

 rpm -ivh  filebeat-8.6.2-x86_64.rpm

 5.2 修改filebeat配置

cd  /etc/filebeat

mv filebeat.yml  filebeat.yml.bak

vim  filebeat.yml

添加如下:

filebeat.inputs:

- type: log

  enabled: true

  paths:

  - /var/log/*log

  - /var/log/messages

setup.ilm.enabled: false

setup.template.name: "test"

setup.template.pattern: "test-*"

output.elasticsearch:

  hosts: ["http://localhost:9200"]

  index: "test-%{+yyyy.MM.dd}"

 5.3启动filebeat

#测试配置是否正确

filebeat test config

#测试一下 Filebeat 和 Elasticsearch 是否连接成功

#设置初始环境

filebeat setup -e

#启动filebeat

systemctl start filebeat

#查看filebeat的日志

tail -20f /var/log/messages

6.kibana配置数据视图及展示搜索日志

最终能看到日志已经加载到ES上了,在kibana上的效果如下:

 这些匹配的规则文件都会被上报到es中 

 /var/log/*log             #这个是符合log后缀的文件

 /var/log/messages   #这个是filebeat的日志文件

相关文章:

ES+FileBeat+Kibana日志采集搭建体验

1.环境准备 需要linux操作系统,并安装了docker环境 此处使用虚拟机演示。(虚拟机和docker看参考我之前写的文章) VirtualBox安装Oracle Linux 7.9全流程-CSDN博客 VirtualBox上的Oracle Linux虚拟机安装Docker全流程-CSDN博客 简单演示搭建ES…...

Dockerfile常用指令详解

Dockerfile 是一个用于定义 Docker 镜像构建过程的脚本文件,其中包含了一系列指令,用于指定如何构建和配置镜像。以下是一些常用的 Dockerfile 指令及其示例用法: 1. FROM 指定基础镜像,Dockerfile 必须以该指令开始。 示例&am…...

【vue】浏览器兼容相关

Vue.js 是一个流行的前端 JavaScript 框架,它支持构建单页应用和复杂的用户界面。Vue.js 的核心库本身对浏览器的支持情况如下: Vue.js 2.x 最低支持版本:IE9 及以上版本。特性支持:ES5。兼容性:Vue 2.x 在发布时就考…...

【区块链+金融服务】基于区块链的区域股权金融综合服务平台 | FISCO BCOS应用案例

区域性股权市场是我国资本市场的重要组成部分,是多层次资本市场体系的基石。区块链技术与区域性股权市场 分散特征天然匹配,从新型金融基础设施层面为场外参与各方提供公共的可信服务,以技术手段完善市场基础条 件,弥补区域性短板…...

string字符串和json对象相互转换问题

//响应体String responseStr EntityUtils.toString(response.getEntity());log.debug("下单响应码:{},响应体:{}",statusCode,responseStr);if(statusCode HttpStatus.OK.value()){JSONObject jsonObject JSONObject.parseObject(responseStr);if(jsonObject.cont…...

【生成式人工智能-十一一个不修改模型就能加速语言模型生成的方法】

一个加速语言模型生成的方法 现在语言模型的一个弊端speculative decoding预言家预测的问题 speculative decoding 模块的实现方法NAT Non-autoregressive模型压缩使用搜索引擎 一些更复杂些的speculative decoding 实现方式 speculative decoding 是一个适用于目前生成模型的加…...

Rust 错误处理

Rust 错误处理 Rust 是一种系统编程语言,以其内存安全、高并发和实用性而著称。在 Rust 中,错误处理是一个核心概念,它通过提供 Result 和 Option 类型来鼓励开发者显式地处理可能出现的错误,而不是依赖异常机制。本文将深入探讨 Rust 中的错误处理机制,包括 Result 和 O…...

程序与进程 linux系统

程序与进程 程序 ( program ): 通常为 binary program ,放置在储存媒体中(如硬盘、光盘、软盘、磁带等), 为实体文件的型态存在;二进制文件,比如静态 /bin/date…...

使用MongoDB构建AI:Story Tools Studio将生成式AI引入Myth Maker AI游戏

Story Tools Studio利用先进的生成式AI技术,打造沉浸式、个性化、无穷尽的情景体验。 Story Tools Studio创始人兼首席执行官Roy Altman表示:“我们的旗舰游戏Myth Maker AI采用的是我们自主研发的、以AI为驱动的专家指导型故事生成器MUSE,它…...

鸿蒙UIAbility组件概述(二)

鸿蒙UIAbility组件概述 UIAbility组件基本用法指定UIAbility的启动页面获取UIAbility的上下文信息 UIAbility组件与UI的数据同步使用EventHub进行数据通信使用AppStorage/LocalStorage进行数据同步 UIAbility组件间交互(设备内)启动应用内的UIAbility启动…...

Oracle(70)如何优化SQL查询?

优化SQL查询是数据库管理的重要部分,旨在提高查询性能,减少响应时间和资源消耗。以下是一些常见的SQL查询优化技术,结合代码示例详细说明。 1. 使用索引 索引是优化查询性能的最常见方法之一。索引可以显著减少数据检索的时间。 示例 假设…...

深度剖析:Jenkins构建任务无法中断的原因及解决方案

个人名片 🎓作者简介:java领域优质创作者 🌐个人主页:码农阿豪 📞工作室:新空间代码工作室(提供各种软件服务) 💌个人邮箱:[2435024119qq.com] &#x1f4f1…...

【YOLO】常用脚本

目录 VOC转YOLO划分训练集、测试集与验证集 VOC转YOLO import os import xml.etree.ElementTree as ETdef convert(size, box):dw 1. / size[0]dh 1. / size[1]x (box[0] box[1]) / 2.0y (box[2] box[3]) / 2.0w box[1] - box[0]h box[3] - box[2]x x * dww w * dwy…...

Springboot IOC DI理解及实现+JUnit的引入+参数配置

一、JavaConfig 我们通常使用 Spring 都会使用 XML 配置,随着功能以及业务逻辑的日益复杂,应用伴随着大量的 XML 配置文件以及复杂的 bean 依赖关系,使用起来很不方便。 在 Spring 3.0 开始,Spring 官方就已经开始推荐使用 Java…...

CeresPCL 最小二乘插值(曲线拟合)

一、简介 在多项式插值时,当数据点个数较多时,插值会导致多项式曲线阶数过高,带来不稳定因素。因此我们可以通过固定幂基函数的最高次数 m(m < n),来对我们要拟合的曲线进行降阶。之前的函数形式就可以变为: 既然是最小二乘问题,那么就仍然可以使用Ceres来进行求解。 …...

【TCP/IP】自定义应用层协议,常见端口号

互联网中&#xff0c;主流的是 TCP/IP 五层协议 5G/4G 上网&#xff0c;是有自己的协议栈&#xff0c;要比 TCP/IP 更复杂&#xff08;能够把 TCP/IP 的一部分内容给包含进去了&#xff09; 应用层 可以代表我们所编写的应用程序&#xff0c;只要应用程序里面用到了网络通信…...

Frida 的下载和安装

首先要安装好 python 环境 安装 frida 和 工具包 pip install frida frida-tools 查看版本&#xff1a; frida --version 16.4.8 然后到 github 上下载对应 server &#xff08; 和frida 的版本一致 16.4.8&#xff09; Releases frida/frida (github.com) 查看手机或…...

后端开发刷题 | 链表内指定区间反转【链表篇】

描述 将一个节点数为 size 链表 m 位置到 n 位置之间的区间反转&#xff0c;要求时间复杂度 O(n)O(n)&#xff0c;空间复杂度 O(1)O(1)。 例如&#xff1a; 给出的链表为 1→2→3→4→5→NULL1→2→3→4→5→NULL, m2,n4 返回 1→4→3→2→5→NULL 数据范围&#xff1a; 链表…...

【NVMe系列-提问页与文章总结页面】

NVMe系列-提问页与文章总结页面 问题汇总NVMe协议是什么&#xff1f;PRP 与 PRP List是做什么的&#xff1f; 已写文章汇总 问题汇总 NVMe协议是什么&#xff1f; PRP 与 PRP List是做什么的&#xff1f; 已写文章汇总...

用生成器函数生成表单各字段

生成器函数生成表单字段是非常合适的用法,避免你要用纯javascript做后台时频繁的制作表单&#xff0c;而不能重复利用 //这里是javascript部分&#xff0c;formfiled.js //生成器函数对字段的处理&#xff0c;让各字段name\className\label\value\placeholder赋值到input的属性…...

IDEA运行Tomcat出现乱码问题解决汇总

最近正值期末周&#xff0c;有很多同学在写期末Java web作业时&#xff0c;运行tomcat出现乱码问题&#xff0c;经过多次解决与研究&#xff0c;我做了如下整理&#xff1a; 原因&#xff1a; IDEA本身编码与tomcat的编码与Windows编码不同导致&#xff0c;Windows 系统控制台…...

使用docker在3台服务器上搭建基于redis 6.x的一主两从三台均是哨兵模式

一、环境及版本说明 如果服务器已经安装了docker,则忽略此步骤,如果没有安装,则可以按照一下方式安装: 1. 在线安装(有互联网环境): 请看我这篇文章 传送阵>> 点我查看 2. 离线安装(内网环境):请看我这篇文章 传送阵>> 点我查看 说明&#xff1a;假设每台服务器已…...

C++_核心编程_多态案例二-制作饮品

#include <iostream> #include <string> using namespace std;/*制作饮品的大致流程为&#xff1a;煮水 - 冲泡 - 倒入杯中 - 加入辅料 利用多态技术实现本案例&#xff0c;提供抽象制作饮品基类&#xff0c;提供子类制作咖啡和茶叶*//*基类*/ class AbstractDr…...

React hook之useRef

React useRef 详解 useRef 是 React 提供的一个 Hook&#xff0c;用于在函数组件中创建可变的引用对象。它在 React 开发中有多种重要用途&#xff0c;下面我将全面详细地介绍它的特性和用法。 基本概念 1. 创建 ref const refContainer useRef(initialValue);initialValu…...

黑马Mybatis

Mybatis 表现层&#xff1a;页面展示 业务层&#xff1a;逻辑处理 持久层&#xff1a;持久数据化保存 在这里插入图片描述 Mybatis快速入门 ![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/6501c2109c4442118ceb6014725e48e4.png //logback.xml <?xml ver…...

五年级数学知识边界总结思考-下册

目录 一、背景二、过程1.观察物体小学五年级下册“观察物体”知识点详解&#xff1a;由来、作用与意义**一、知识点核心内容****二、知识点的由来&#xff1a;从生活实践到数学抽象****三、知识的作用&#xff1a;解决实际问题的工具****四、学习的意义&#xff1a;培养核心素养…...

图表类系列各种样式PPT模版分享

图标图表系列PPT模版&#xff0c;柱状图PPT模版&#xff0c;线状图PPT模版&#xff0c;折线图PPT模版&#xff0c;饼状图PPT模版&#xff0c;雷达图PPT模版&#xff0c;树状图PPT模版 图表类系列各种样式PPT模版分享&#xff1a;图表系列PPT模板https://pan.quark.cn/s/20d40aa…...

AI,如何重构理解、匹配与决策?

AI 时代&#xff0c;我们如何理解消费&#xff1f; 作者&#xff5c;王彬 封面&#xff5c;Unplash 人们通过信息理解世界。 曾几何时&#xff0c;PC 与移动互联网重塑了人们的购物路径&#xff1a;信息变得唾手可得&#xff0c;商品决策变得高度依赖内容。 但 AI 时代的来…...

让回归模型不再被异常值“带跑偏“,MSE和Cauchy损失函数在噪声数据环境下的实战对比

在机器学习的回归分析中&#xff0c;损失函数的选择对模型性能具有决定性影响。均方误差&#xff08;MSE&#xff09;作为经典的损失函数&#xff0c;在处理干净数据时表现优异&#xff0c;但在面对包含异常值的噪声数据时&#xff0c;其对大误差的二次惩罚机制往往导致模型参数…...

智能AI电话机器人系统的识别能力现状与发展水平

一、引言 随着人工智能技术的飞速发展&#xff0c;AI电话机器人系统已经从简单的自动应答工具演变为具备复杂交互能力的智能助手。这类系统结合了语音识别、自然语言处理、情感计算和机器学习等多项前沿技术&#xff0c;在客户服务、营销推广、信息查询等领域发挥着越来越重要…...