当前位置: 首页 > news >正文

24/8/17算法笔记 CQL算法离线学习

离线学习:不需要更新数据

CQL(Conservative Q-Learning)算法是一种用于离线强化学习的方法,它通过学习一个保守的Q函数来解决标准离线RL方法可能由于数据集和学习到的策略之间的分布偏移而导致的过高估计问题 。CQL算法的核心思想是在Q值的基础上增加一个正则化项(regularizer),从而得到真实动作值函数的下界估计。这种方法在理论上被证明可以产生当前策略的真实值下界,并且可以进行策略评估和策略提升的过程 。

CQL算法通过修改值函数的备份方式,添加正则化项来实现保守性。在优化过程中,CQL旨在找到一个Q函数,该函数在给定策略下的期望值低于其真实值。这通过在Q学习的目标函数中添加一个惩罚项来实现,该惩罚项限制了策略π下Q函数的期望值不能偏离数据分布Q函数的期望值 。

CQL算法的实现相对简单,只需要在现有的深度Q学习和行动者-评论家实现的基础上添加少量代码。在实验中,CQL在多个领域和数据集上的表现优于现有的离线强化学习方法,尤其是在学习复杂和多模态数据分布时,通常可以使学习策略获得2到5倍的最终回报 。

此外,CQL算法的一个关键优势是它提供了一种有效的解决方案,可以在不与环境进行额外交互的情况下,利用先前收集的静态数据集学习有效的策略。这使得CQL在自动驾驶和医疗机器人等领域具有潜在的应用价值,这些领域中与环境的交互次数在成本和风险方面都是有限的 。

总的来说,CQL算法通过其保守的Q函数估计和正则化策略,为离线强化学习领域提供了一种有效的策略学习框架,并在理论和实践上都显示出了其有效性

import gym
from matplotlib import pyplot as plt
import numpy as np
import random
%matplotlib inline
#创建环境
env = gym.make('Pendulum-v1')
env.reset()#打印游戏
def show():plt.imshow(env.render(mode='rgb_array'))plt.show()

定义sac模型,代码略http://t.csdnimg.cn/ic2HX

定义teacher模型

#定义teacher模型
teacher = SAC()teacher.train(torch.tandn(5,3),torch.randn(5,1),torch.randn(5,1),torch.randn(5,3),torch.zeros(5,1).long(),
)

定义Data类

#样本池
datas = []#向样本池中添加N条数据,删除M条最古老的数据
def update_data():#初始化游戏state = env.reset()#玩到游戏结束为止over = Falsewhile not over:#根据当前状态得到一个动作action = get_action(state)#执行当作,得到反馈next_state,reward,over, _ = env.step([action])#记录数据样本datas.append((states,action,reward,next_state,over))#更新游戏状态,开始下一个当作state = next_state#数据上限,超出时从最古老的开始删除while len(datas)>10000:datas.pop(0)#获取一批数据样本
def get_sample():samples = random.sample(datas,64)#[b,4]state = torch.FloatTensor([i[0]for i in samples]).reshape(-1,3)#[b,1]action = torch.LongTensor([i[1]for i in samples]).reshape(-1,1)#[b,1]reward = torch.FloatTensor([i[2]for i in samples]).reshape(-1,1)#[b,4]next_state = torch.FloatTensor([i[3]for i in samples]).reshape(-1,3)#[b,1]over = torch.LongTensor([i[4]for i in samples]).reshape(-1,1)return state,action,reward,next_state,overstate,action,reward,next_state,over=get_sample()state[:5],action[:5],reward[:5],next_state[:5],over[:5]
data = Data()
data.update_data(teacher),data.get_sample()

训练teacher模型

#训练teacher模型
for epoch in range(100):#更新N条数据datat.update_data(teacher)#每次更新过数据后,学习N次for i in range(200):teacher.train(*data.get_sample())if epoch%10==0:test_result = sum([teacher.test(play=False)for _ in range(10)])/10print(epoch,test_result)

定义CQL模型

class CQL(SAC):def __init__(self):super().__init__()def _get_loss_value(self,model_value,target,state,action,next_state):#计算valuevalue = model_value(state,action)#计算loss,value的目标是要贴近targetloss_value = self.loss_fn(value,tarfet)"""以上与SAC相同,以下是CQL部分"""#把state复制5彼遍state = state.unsqueeze(dim=1)state = state.repeat(1,5,1).reshape(-1,3)#把next_state复制5遍next_state = next_state.unsqueeze(1)next_state = next_state.repeat(1,5,1).reshape(-1,3)#随机一批动作,数量是数据量的5倍,值域在-1到1之间rand_action = torch.empty([len(state),1]).uniform_(-1,1)#计算state的动作和熵curr_action,next_entropy = self..mdoel_action(next_state)#计算三方动作的valuevalue_rand = model_value(state,rand_action).reshape(-1,5,1)value_curr = model_value(state,curr_action).reshape(-1,5,1)value_next = model_value(state,next_action).reshape(-1,5,1)curr_entropy = curr_entropy.detach().reshape(-1,5,1)next_entropy = next_entropy.detach().reshape(-1,5,1)#三份value分别减去他们的熵value_rand -=mat.log(0.5)value_curr -=curr_entropyvalue_next -=next_entropy#拼合三份valuevalue_cat = torch.cat([value_rand,value_curr,value_next],dim=1)#等价t.logsumexp(dim=1),t.exp().sum(dim=1).log()loss_cat = torch.logsumexp(value_cat,dim =1).mean()#在原本的loss上增加上这一部分loss_value += 5.0*(loss_cat - value.mean())"""差异到此为止"""

学生模型

student = CQL()
student.train(torch.randn(5,3),torch.randn(5,1),torch.randn(5,1),torch.randn(5,3),torch.zeros(5,1)long(),
)

离线训练,训练过程中完全不更新数据

#训练N次,训练过程中不需要更新数据
for i in range(50000):#采样一批数据student.train(*data.get_sample())if i%2000 ==0:test_result = sum([student.test(play = False) for _ in range(10)])print(i,test_result)

相关文章:

24/8/17算法笔记 CQL算法离线学习

离线学习:不需要更新数据 CQL(Conservative Q-Learning)算法是一种用于离线强化学习的方法,它通过学习一个保守的Q函数来解决标准离线RL方法可能由于数据集和学习到的策略之间的分布偏移而导致的过高估计问题 。CQL算法的核心思想…...

C++第十一弹 -- STL之List的剖析与使用

文章索引 前言1. list的介绍2 list的使用2.1 list的构造函数2.2 iterator的使用2.3 list capacity2.4 list element access2.5 list modifiers 3. list的迭代器失效4. list与vector的对比总结 前言 本篇我们旨在探讨对于STL中list的使用, 下一篇我们将会对list进行底层剖析以及…...

物流快递外卖管理平台系统-计算机毕设Java|springboot实战项目

🍊作者:计算机毕设匠心工作室 🍊简介:毕业后就一直专业从事计算机软件程序开发,至今也有8年工作经验。擅长Java、Python、微信小程序、安卓、大数据、PHP、.NET|C#、Golang等。 擅长:按照需求定制化开发项目…...

开源BaaS 平台介绍

以下是几款常见的开源后端平台,它们提供了用户管理、权限验证、文件存储、API 管理等类似的后端功能。 1. Parse Server 简介: Parse 是一个非常流行的开源后端服务平台,它最初由 Facebook 开发,后来开源。它支持用户管理、数据存储、文件存…...

分享一个基于python爬虫的“今日头条”新闻数据分析可视化系统(源码、调试、LW、开题、PPT)

💕💕作者:计算机源码社 💕💕个人简介:本人 八年开发经验,擅长Java、Python、PHP、.NET、Node.js、Android、微信小程序、爬虫、大数据、机器学习等,大家有这一块的问题可以一起交流&…...

QT自定义信号槽

1.自定义信号槽 使用connect()可以让我们连接系统提供的信号和槽,同时也可以自定义信号槽。 例如以学生和老师构建类同时当老师触发信号下课同学收到信号执行“吃饭”这一动作代码示例 #include "SignalAndSlot.h" //Teacher Student 总框架…...

one-shot 序列图像红外小目标分割

one-shot 序列图像红外小目标分割 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 代码还未开源 GitHub - D-IceIce/one-shot-IRSTS few-shot:利用少量标注样本进行学习 one-shot: 属于few-shot的特殊情况,只用一个样本进行学习 zero-shot&am…...

JavaScript 单线程防阻塞的原理

JavaScript 是一种单线程语言,这意味着它一次只能执行一个任务。这种设计可能会导致一些问题,比如当遇到耗时的操作时,整个程序可能会被阻塞。为了解决这个问题,JavaScript 使用了事件循环和回调函数的机制,实现了非阻塞式的异步操作。 事件循环 JavaScript 有一个事件队列,用…...

Shell脚本发送邮件的详细步骤与配置方法?

Shell脚本发送邮件的进阶技巧?怎么配置Shell脚本发信? 使用Shell脚本发送邮件是一种高效的自动化手段,特别是在需要定期发送报告、通知或警告信息时。AokSend将详细介绍Shell脚本发送邮件的步骤与配置方法,帮助您更好地掌握这一技…...

如何把Phalcon 集成到PhpStorm里面

一 背景 按照上一篇文章里面写的Phalcon 创建项目过程中的一些坑, 最终我们在终端可以基于Phalcon命令创建对应的开发项目。但在这个过程中,存在一个问题:那就是写代码的时候,发现Phalcon对应的依赖提示都没有,如下: 从上面这个截图来看,就能发现,Phalcon的啥…...

python从入门到精通:循环语句

目录 前言 1、while循环的基础语法 2、while循环的嵌套 3、for循环的基础语法 range语句: for循环临时变量作用域: 4、for循环的嵌套 5、循环中断:break和continue 前言 循环普遍存在于日常生活中,同样,在程序中…...

Codeforces Round 965 (Div. 2)

前言 有人在过七夕,我在打 cf ,还有某人独自一人在学校机房,凌晨一点骑上共享单车回宿舍欣赏沿途的秋风扫落叶。 Standings:2166 题目链接:Dashboard - Codeforces Round 965 (Div. 2) - Codeforces A. Find K Distin…...

Win10下载安装Mysql服务

Win10下载安装MySQL 一、官网下载MySQL 1.官网地址: https://www.mysql.com/ 2.在官网首页拉到最下方,点击MySQL Community Server: 3.根据个人电脑的操作系统选择,此处以Windows x64为例,选择第2个,点击…...

MVVM(Model-View-ViewModel)架构模式

在Android开发中,MVVM(Model-View-ViewModel)架构模式已经成为构建可维护和可扩展应用程序的重要选择。MVVM模式通过分离视图(View)、模型(Model)和视图模型(ViewModel)来…...

C#MVC返回DataTable到前端展示。

很久没写博客了,闭关太久,失踪人口回归,给诸位道友整点绝活。 交代下背景:要做一个行转列的汇总统计,而且,由于是行转列,列的数量不固定,所以,没法使用正常的SqlSugar框…...

HttpUtils工具类(二)Apache HttpClient 5 使用详细教程

目录 一、Apache HttpClient 5介绍 (1)核心特性 (2)Apache HttpClient 5 的新特性 (3)在 Java 项目的主要使用场景及缺点 使用场景: 缺点: 二、在实际项目中的应用 &#xf…...

Vue3.0生命周期钩子(包含:Vue 2.0 和 Vue 3.0)

1、Vue 2.0 生命周期钩子 每个应用程序实例在创建时都有一系列的初始化步骤。例如,创建数据绑定、编译模板、将实例挂载到 DOM 并在数据变化时触发 DOM 更新、销毁实例等。在这个过程中会运行一些叫做生命周期钩子的函数,通过这些钩子函数可以定义业务逻…...

遥感之常用各种指数总结大全

目前在遥感领域基本各种研究领域都会用到各种各样的指数,如水体指数,植被指数,农业长势指数,盐分指数,云指数,阴影指数,建筑物指数,水质指数,干旱指数等等众多。 本文对上…...

【C++】C++11新增特性

目录 C11简介: 1、统一的列表初始化: std::initializer_list 2、自动类型推导: auto: decltype: 3、final 和 override final: override: 4、默认成员函数控制: 显示缺省…...

【LeetCode每日一题】——662.二叉树最大宽度

文章目录 一【题目类别】二【题目难度】三【题目编号】四【题目描述】五【题目示例】六【题目提示】七【解题思路】八【时间频度】九【代码实现】十【提交结果】 一【题目类别】 广度优先搜索 二【题目难度】 中等 三【题目编号】 662.二叉树最大宽度 四【题目描述】 给…...

AtCoder 第409​场初级竞赛 A~E题解

A Conflict 【题目链接】 原题链接:A - Conflict 【考点】 枚举 【题目大意】 找到是否有两人都想要的物品。 【解析】 遍历两端字符串,只有在同时为 o 时输出 Yes 并结束程序,否则输出 No。 【难度】 GESP三级 【代码参考】 #i…...

零基础在实践中学习网络安全-皮卡丘靶场(第九期-Unsafe Fileupload模块)(yakit方式)

本期内容并不是很难,相信大家会学的很愉快,当然对于有后端基础的朋友来说,本期内容更加容易了解,当然没有基础的也别担心,本期内容会详细解释有关内容 本期用到的软件:yakit(因为经过之前好多期…...

短视频矩阵系统文案创作功能开发实践,定制化开发

在短视频行业迅猛发展的当下,企业和个人创作者为了扩大影响力、提升传播效果,纷纷采用短视频矩阵运营策略,同时管理多个平台、多个账号的内容发布。然而,频繁的文案创作需求让运营者疲于应对,如何高效产出高质量文案成…...

代码随想录刷题day30

1、零钱兑换II 给你一个整数数组 coins 表示不同面额的硬币,另给一个整数 amount 表示总金额。 请你计算并返回可以凑成总金额的硬币组合数。如果任何硬币组合都无法凑出总金额,返回 0 。 假设每一种面额的硬币有无限个。 题目数据保证结果符合 32 位带…...

区块链技术概述

区块链技术是一种去中心化、分布式账本技术,通过密码学、共识机制和智能合约等核心组件,实现数据不可篡改、透明可追溯的系统。 一、核心技术 1. 去中心化 特点:数据存储在网络中的多个节点(计算机),而非…...

Visual Studio Code 扩展

Visual Studio Code 扩展 change-case 大小写转换EmmyLua for VSCode 调试插件Bookmarks 书签 change-case 大小写转换 https://marketplace.visualstudio.com/items?itemNamewmaurer.change-case 选中单词后,命令 changeCase.commands 可预览转换效果 EmmyLua…...

在RK3588上搭建ROS1环境:创建节点与数据可视化实战指南

在RK3588上搭建ROS1环境:创建节点与数据可视化实战指南 背景介绍完整操作步骤1. 创建Docker容器环境2. 验证GUI显示功能3. 安装ROS Noetic4. 配置环境变量5. 创建ROS节点(小球运动模拟)6. 配置RVIZ默认视图7. 创建启动脚本8. 运行可视化系统效果展示与交互技术解析ROS节点通…...

2025年- H71-Lc179--39.组合总和(回溯,组合)--Java版

1.题目描述 2.思路 当前的元素可以重复使用。 (1)确定回溯算法函数的参数和返回值(一般是void类型) (2)因为是用递归实现的,所以我们要确定终止条件 (3)单层搜索逻辑 二…...

向量几何的二元性:叉乘模长与内积投影的深层联系

在数学与物理的空间世界中,向量运算构成了理解几何结构的基石。叉乘(外积)与点积(内积)作为向量代数的两大支柱,表面上呈现出截然不同的几何意义与代数形式,却在深层次上揭示了向量间相互作用的…...

goreplay

1.github地址 https://github.com/buger/goreplay 2.简单介绍 GoReplay 是一个开源的网络监控工具,可以记录用户的实时流量并将其用于镜像、负载测试、监控和详细分析。 3.出现背景 随着应用程序的增长,测试它所需的工作量也会呈指数级增长。GoRepl…...