S-Procedure的基本形式及使用
理论

Lemma 1. ( S- Procedure[ 34] ) : Define the quadratic func- \textbf{Lemma 1. ( S- Procedure[ 34] ) : Define the quadratic func- } Lemma 1. ( S- Procedure[ 34] ) : Define the quadratic func-
tions w.r.t. x ∈ C M × 1 \mathbf{x}\in\mathbb{C}^M\times1 x∈CM×1 as
f m ( x ) = x H A m x + 2 R e { b m H x } + c m , m = 1 , 2 , f_m\left(\mathbf{x}\right)=\mathbf{x}^H\mathbf{A}_m\mathbf{x}+2Re\left\{\mathbf{b}_m^H\mathbf{x}\right\}+c_m,m=1,2, fm(x)=xHAmx+2Re{bmHx}+cm,m=1,2,
where A m ∈ C M × M , b m ∈ C M × 1 , a n d \mathbf{A}_m\in\mathbb{C}^{M\times M},\mathbf{b}_m\in\mathbb{C}^{M\times1},and Am∈CM×M,bm∈CM×1,and c m ∈ R . The c_m\in \mathbb{R} . \textit{The} cm∈R.The
c o n d i t i o n f 1 ≤ 0 ⇒ f 2 ≤ 0 h o l d s i f a n d o n l y i f t h e r e e x i s t s condition~f_1\leq0\Rightarrow f_2\leq0~holds~if~and~only~if~there~exists condition f1≤0⇒f2≤0 holds if and only if there exists
a variable ω ≥ 0 such that a\textit{ variable }\omega \geq 0\textit{ such that} a variable ω≥0 such that
(19)
ω [ A 1 b 1 b 1 H c 1 ] − [ A 2 b 2 b 2 H c 2 ] ⪰ 0 M + 1 . \omega\begin{bmatrix}\mathbf{A}_1&\mathbf{b}_1\\\mathbf{b}_1^H&c_1\end{bmatrix}-\begin{bmatrix}\mathbf{A}_2&\mathbf{b}_2\\\mathbf{b}_2^H&c_2\end{bmatrix}\succeq\mathbf{0}_{M+1}. ω[A1b1Hb1c1]−[A2b2Hb2c2]⪰0M+1.
理论重述
Let f ( x ) f(x) f(x) and g ( x ) g(x) g(x) be two quadratic forms defined as:
f ( x ) = x H A x + 2 ℜ ( b H x ) + c f(x) = x^H A x + 2 \Re(b^H x) + c f(x)=xHAx+2ℜ(bHx)+c
and
g ( x ) = x H D x + 2 ℜ ( e H x ) + f g(x) = x^H D x + 2 \Re(e^H x) + f g(x)=xHDx+2ℜ(eHx)+f
where A , D ∈ C n × n A, D \in \mathbb{C}^{n \times n} A,D∈Cn×n are Hermitian matrices, b , e ∈ C n b, e \in \mathbb{C}^n b,e∈Cn are complex vectors, and c , f ∈ R c, f \in \mathbb{R} c,f∈R are real constants. The superscript H H H denotes the Hermitian (conjugate transpose) of the matrix or vector.
The implication
f ( x ) ≤ 0 ⟹ g ( x ) ≤ 0 f(x) \leq 0 \implies g(x) \leq 0 f(x)≤0⟹g(x)≤0
holds if and only if there exists a scalar λ ≥ 0 \lambda \geq 0 λ≥0 such that:
f ( x ) + λ g ( x ) ≤ 0 f(x) + \lambda g(x) \leq 0 f(x)+λg(x)≤0
or equivalently:
x H ( A + λ D ) x + 2 ℜ ( ( b + λ e ) H x ) + ( c + λ f ) ≤ 0 for all x . x^H (A + \lambda D) x + 2 \Re \left( (b + \lambda e)^H x \right) + (c + \lambda f) \leq 0 \quad \text{for all } x. xH(A+λD)x+2ℜ((b+λe)Hx)+(c+λf)≤0for all x.
This condition can be rewritten as the following matrix inequality:
( A + λ D b + λ e ( b + λ e ) H c + λ f ) ⪰ 0 \begin{pmatrix} A + \lambda D & b + \lambda e \\ (b + \lambda e)^H & c + \lambda f \end{pmatrix} \succeq 0 (A+λD(b+λe)Hb+λec+λf)⪰0
where ⪰ 0 \succeq 0 ⪰0 denotes that the matrix is positive semidefinite (PSD).
Thus, the S-Procedure states that if such a non-negative λ \lambda λ exists, then the implication f ( x ) ≤ 0 ⟹ g ( x ) ≤ 0 f(x) \leq 0 \implies g(x) \leq 0 f(x)≤0⟹g(x)≤0 holds.
实际案例
已知
Δ h H Δ h ≤ a \Delta\mathbf{h}^H \Delta\mathbf{h} \leq a ΔhHΔh≤a
如何根据S-Procedure 理论把下列形式转化成线性矩阵不等式呢
g ( Δ h ) = Δ h H D Δ h + 2 ℜ ( h H D Δ h ) + h H D h − z ≥ 0 g(\Delta\mathbf{h}) = \Delta\mathbf{h}^H \mathbf{D} \Delta\mathbf{h} + 2 \Re(\mathbf{h}^H \mathbf{D} \Delta\mathbf{h}) + \mathbf{h}^H \mathbf{D} \mathbf{h} - z \geq 0 g(Δh)=ΔhHDΔh+2ℜ(hHDΔh)+hHDh−z≥0
实际案例详细说明
\section*{S-Procedure 推导}
\textbf{已知条件}
-
不等式 f 1 ( Δ h ) f_1(\Delta \mathbf{h}) f1(Δh):
f 1 ( Δ h ) = Δ h H Δ h − a ≤ 0 f_1(\Delta \mathbf{h}) = \Delta \mathbf{h}^H \Delta \mathbf{h} - a \leq 0 f1(Δh)=ΔhHΔh−a≤0
这表示:
Δ h H Δ h ≤ a \Delta \mathbf{h}^H \Delta \mathbf{h} \leq a ΔhHΔh≤a -
需要证明的不等式 f 2 ( Δ h ) f_2(\Delta \mathbf{h}) f2(Δh):
f 2 ( Δ h ) = − ( Δ h H D Δ h + 2 ℜ ( h H D Δ h ) + h H D h − z ) ≤ 0 f_2(\Delta \mathbf{h}) = - \left( \Delta \mathbf{h}^H \mathbf{D} \Delta \mathbf{h} + 2 \Re (\mathbf{h}^H \mathbf{D} \Delta \mathbf{h}) + \mathbf{h}^H \mathbf{D} \mathbf{h} - z \right) \leq 0 f2(Δh)=−(ΔhHDΔh+2ℜ(hHDΔh)+hHDh−z)≤0
等价于:
Δ h H D Δ h + 2 ℜ ( h H D Δ h ) + h H D h − z ≥ 0 \Delta \mathbf{h}^H \mathbf{D} \Delta \mathbf{h} + 2 \Re (\mathbf{h}^H \mathbf{D} \Delta \mathbf{h}) + \mathbf{h}^H \mathbf{D} \mathbf{h} - z \geq 0 ΔhHDΔh+2ℜ(hHDΔh)+hHDh−z≥0
\textbf{应用 S-Procedure}
为了应用 S-Procedure,我们需要构造两个二次型 f 1 f_1 f1 和 f 2 f_2 f2 的矩阵形式,并构造相应的线性矩阵不等式 (LMI)。
-
构造 f 1 ( Δ h ) f_1(\Delta \mathbf{h}) f1(Δh) 的矩阵形式:
f 1 ( Δ h ) = Δ h H Δ h − a f_1(\Delta \mathbf{h}) = \Delta \mathbf{h}^H \Delta \mathbf{h} - a f1(Δh)=ΔhHΔh−a
其矩阵形式为:
[ I 0 0 − a ] \begin{bmatrix} \mathbf{I} & \mathbf{0} \\ \mathbf{0} & -a \end{bmatrix} [I00−a] -
构造 f 2 ( Δ h ) f_2(\Delta \mathbf{h}) f2(Δh) 的矩阵形式:
f 2 ( Δ h ) = − ( Δ h H D Δ h + 2 ℜ ( h H D Δ h ) + h H D h − z ) f_2(\Delta \mathbf{h}) = - \left( \Delta \mathbf{h}^H \mathbf{D} \Delta \mathbf{h} + 2 \Re (\mathbf{h}^H \mathbf{D} \Delta \mathbf{h}) + \mathbf{h}^H \mathbf{D} \mathbf{h} - z \right) f2(Δh)=−(ΔhHDΔh+2ℜ(hHDΔh)+hHDh−z)
可以简化为:
f 2 ( Δ h ) = − Δ h H D Δ h − 2 ℜ ( h H D Δ h ) − ( h H D h − z ) f_2(\Delta \mathbf{h}) = - \Delta \mathbf{h}^H \mathbf{D} \Delta \mathbf{h} - 2 \Re (\mathbf{h}^H \mathbf{D} \Delta \mathbf{h}) - (\mathbf{h}^H \mathbf{D} \mathbf{h} - z) f2(Δh)=−ΔhHDΔh−2ℜ(hHDΔh)−(hHDh−z)
其矩阵形式为:
[ − D − D h − h H D − ( h H D h − z ) ] \begin{bmatrix} -\mathbf{D} & -\mathbf{D} \mathbf{h} \\ -\mathbf{h}^H \mathbf{D} & -(\mathbf{h}^H \mathbf{D} \mathbf{h} - z) \end{bmatrix} [−D−hHD−Dh−(hHDh−z)] -
构造 S-Procedure 矩阵:
根据 S-Procedure,存在 μ ≥ 0 \mu \geq 0 μ≥0 使得:
μ [ I 0 0 − a ] − [ − D − D h − h H D − ( h H D h − z ) ] ⪰ 0 \mu \begin{bmatrix} \mathbf{I} & \mathbf{0} \\ \mathbf{0} & -a \end{bmatrix} - \begin{bmatrix} -\mathbf{D} & -\mathbf{D} \mathbf{h} \\ -\mathbf{h}^H \mathbf{D} & -(\mathbf{h}^H \mathbf{D} \mathbf{h} - z) \end{bmatrix} \succeq \mathbf{0} μ[I00−a]−[−D−hHD−Dh−(hHDh−z)]⪰0
进一步简化为:
[ μ I + D D h h H D − μ a + ( h H D h − z ) ] ⪰ 0 \begin{bmatrix} \mu \mathbf{I} + \mathbf{D} & \mathbf{D} \mathbf{h} \\ \mathbf{h}^H \mathbf{D} & -\mu a + (\mathbf{h}^H \mathbf{D} \mathbf{h} - z) \end{bmatrix} \succeq \mathbf{0} [μI+DhHDDh−μa+(hHDh−z)]⪰0
相关文章:
S-Procedure的基本形式及使用
理论 Lemma 1. ( S- Procedure[ 34] ) : Define the quadratic func- \textbf{Lemma 1. ( S- Procedure[ 34] ) : Define the quadratic func- } Lemma 1. ( S- Procedure[ 34] ) : Define the quadratic func- tions w.r.t. x ∈ C M 1 \mathbf{x}\in\mathbb{C}^M\times1 x…...
free -h 查看内存free空间不足
free空间不足 大部分被buff/cache占用 解决办法一: 手动释放缓存 释放页缓存 sudo sync; sudo sysctl -w vm.drop_caches1 释放目录项和inode缓存 sudo sync; sudo sysctl -w vm.drop_caches2 释放所有缓存(页缓存、目录项和inode缓存) sudo sync…...
rust学习笔记
参考资料:https://doc.rust-lang.org/book/ch01-02-hello-world.html 一、 编译与运行 在 Rust 中,编译和运行代码的常用命令是使用 cargo,这是 Rust 的包管理和构建工具。以下是使用 cargo 和 rustc(Rust 编译器)的具…...
【有啥问啥】复习变分下界即证据下界(Evidence Lower Bound, ELBO):原理与应用
复习变分下界即证据下界(Evidence Lower Bound, ELBO):原理与应用 变分下界(Variational Lower Bound),也称为“证据下界”(Evidence Lower Bound, ELBO),是概率模型中的…...
Linux shell编程学习笔记78:cpio命令——文件和目录归档工具(上)
0 前言 在Linux系统中,除了tar命令,我们还可以使用cpio命令来进行文件和目录的归档。 1 cpio命令的功能,帮助信息,格式,选项和参数说明 1.1 cpio命令的功能 cpio 名字来自 "copy in, copy out"…...
为什么在 JSON 序列化中不使用 transient
有些小伙伴发现了,明明在返回的实体类中指定了属性为transient。为什么前端得到的返回json中还是有这个属性的值? 类: private String name; private transient String password;返回结果: { name:"刘大大", password:…...
K8S - Volume - NFS 卷的简介和使用
在之前的文章里已经介绍了 K8S 中两个简单卷类型 hostpath 和 emptydir k8s - Volume 简介和HostPath的使用 K8S - Emptydir - 取代ELK 使用fluentd 构建logging saidcar 但是这两种卷都有同1个限制, 就是依赖于 k8s nodes的空间 如果某个service pod中需要的vol…...
IO模型---BIO、NIO、IO多路复用、AIO详解
本篇将想给详细解释一下什么是BIO、NIO、IO多路复用以及AIO~ 同步的阻塞(BIO)和非阻塞(NIO)的区别 BIO:线程发来IO请求后,一直阻塞着IO线程,需要缓冲区这边数据准备好之后,才会进行下一步的操作。 举个🌰࿱…...
蓝桥杯真题——约翰的牛奶
输入样例: 8 9 10 输出样例: 1 2 8 9 10 本题是宽搜的模版题,不论怎么倒牛奶,A,B,C 桶里的牛奶可以看做一个三元点集 我们只要找到A桶是空的,B,C桶中的状态即可 #include <iostream> #include <cstring…...
单机docker-compose部署minio
单机多副本docker-compose部署minio 简单介绍 如果服务器有限可以单机挂载多硬盘实现多副本容错(生产不推荐) 部署好的文件状态 有两个重要文件 docker-compose.yaml和nginx.conf docker-compose.yaml是docker部署容器的配置信息包括4个minio和1个ng…...
Winform实现弹出定时框功能
1、程序 private void TimeDialogInitialize(){for(int i1; i<30;i){cbbTimeDialog.Items.Add(i);}}private void cbbTimeDialog_SelectedIndexChanged(object sender, EventArgs e){foreach(int i in cbbTimeDialog.Items){if(cbbTimeDialog.SelectedItem!null &&…...
【机器学习(四)】分类和回归任务-梯度提升决策树(GBDT)-Sentosa_DSML社区版
文章目录 一、算法概念一、算法原理(一) GBDT 及负梯度拟合原理(二) GBDT 回归和分类1、GBDT回归1、GBDT分类二元分类多元分类 (三)损失函数1、回归问题的损失函数2. 分类问题的损失函数: 三、G…...
Mini-Omni 语言模型在流式传输中边思考边听说应用
引入简介 Mini-Omni 是一个开源的多模态大语言模型,能够在思考的同时进行听觉和语言交流。它具有实时端到端语音输入和流媒体音频输出的对话能力。 语言模型的最新进展取得了显著突破。GPT-4o 作为一个新的里程碑,实现了与人类的实时对话,展示了接近人类的自然流畅度。为了…...
vue devtools的使用
vue devtools的使用 Vue Devtools 是一个强大的浏览器扩展,旨在帮助你调试和开发 Vue.js 应用。它支持 Chrome 和 Firefox 浏览器,并提供了一些工具和功能,可以让你更轻松地查看和调试 Vue 应用的状态和行为。以下是如何安装和使用 Vue Devtools 的详细指南。 安装 Vue De…...
无人机培训:无人机维护保养技术详解
随着无人机技术的飞速发展,其在航拍、农业、救援、环境监测等领域的应用日益广泛。然而,要确保无人机安全、高效地执行任务,定期的维护保养至关重要。本文将深入解析无人机维护保养的核心技术,涵盖基础构造理解、清洁与防尘、电机…...
Mac 创建 Python 虚拟环境
在 macOS 上,您可以使用以下步骤使用 virtualenv 创建虚拟环境: 首先,确保您已经安装了 Python 和 virtualenv。您可以在终端中运行以下命令来检查它们是否已安装: python --version virtualenv --version如果这些命令没有找到&am…...
安卓玩机工具-----无需root权限 卸载 禁用 删除当前机型app应用 ADB玩机工具
ADB玩机工具 ADB AppControl是很实用的安卓手机应用管理工具,无需root权限,通过usb连接电脑后,可以很方便的进行应用程序安装与卸载,还支持提取手机应用apk文件到电脑上,此外还有手机系统垃圾清理、上传文件等…...
中国科技统计年鉴1991-2020年
(数据收集)中国科技统计年鉴1991-2020年.Excel格式资源-CSDN文库https://download.csdn.net/download/2401_84585615/89475658 《中国科技统计年鉴》是由国家统计局社会科技和文化产业统计司与科学技术部战略规划司共同编辑的官方统计资料书,…...
OpenAI / GPT-4o:Python 返回结构化 / JSON 输出
在调用 OpenAI(比如:GPT-4o)接口时,希望返回的结果是能够在后续任务中自动化处理的结构化 / JSON 输出。GPT 版本:gpt-4o-2024-08-06,提供了这样的功能。 目标:从非结构化输入到结构化数据&…...
通信工程学习:什么是EDFA掺铒光纤放大器
EDFA:掺铒光纤放大器 EDFA,即掺铒光纤放大器(Erbium-Doped Fiber Amplifier),是一种在光纤通信中广泛使用的光放大器件。以下是对EDFA的详细解释: 一、定义与基本原理 EDFA是在石英光纤中掺入少量的稀土元…...
Python爬虫实战:研究MechanicalSoup库相关技术
一、MechanicalSoup 库概述 1.1 库简介 MechanicalSoup 是一个 Python 库,专为自动化交互网站而设计。它结合了 requests 的 HTTP 请求能力和 BeautifulSoup 的 HTML 解析能力,提供了直观的 API,让我们可以像人类用户一样浏览网页、填写表单和提交请求。 1.2 主要功能特点…...
XCTF-web-easyupload
试了试php,php7,pht,phtml等,都没有用 尝试.user.ini 抓包修改将.user.ini修改为jpg图片 在上传一个123.jpg 用蚁剑连接,得到flag...
springboot 百货中心供应链管理系统小程序
一、前言 随着我国经济迅速发展,人们对手机的需求越来越大,各种手机软件也都在被广泛应用,但是对于手机进行数据信息管理,对于手机的各种软件也是备受用户的喜爱,百货中心供应链管理系统被用户普遍使用,为方…...
RocketMQ延迟消息机制
两种延迟消息 RocketMQ中提供了两种延迟消息机制 指定固定的延迟级别 通过在Message中设定一个MessageDelayLevel参数,对应18个预设的延迟级别指定时间点的延迟级别 通过在Message中设定一个DeliverTimeMS指定一个Long类型表示的具体时间点。到了时间点后…...
循环冗余码校验CRC码 算法步骤+详细实例计算
通信过程:(白话解释) 我们将原始待发送的消息称为 M M M,依据发送接收消息双方约定的生成多项式 G ( x ) G(x) G(x)(意思就是 G ( x ) G(x) G(x) 是已知的)࿰…...
STM32F4基本定时器使用和原理详解
STM32F4基本定时器使用和原理详解 前言如何确定定时器挂载在哪条时钟线上配置及使用方法参数配置PrescalerCounter ModeCounter Periodauto-reload preloadTrigger Event Selection 中断配置生成的代码及使用方法初始化代码基本定时器触发DCA或者ADC的代码讲解中断代码定时启动…...
基于当前项目通过npm包形式暴露公共组件
1.package.sjon文件配置 其中xh-flowable就是暴露出去的npm包名 2.创建tpyes文件夹,并新增内容 3.创建package文件夹...
cf2117E
原题链接:https://codeforces.com/contest/2117/problem/E 题目背景: 给定两个数组a,b,可以执行多次以下操作:选择 i (1 < i < n - 1),并设置 或,也可以在执行上述操作前执行一次删除任意 和 。求…...
springboot整合VUE之在线教育管理系统简介
可以学习到的技能 学会常用技术栈的使用 独立开发项目 学会前端的开发流程 学会后端的开发流程 学会数据库的设计 学会前后端接口调用方式 学会多模块之间的关联 学会数据的处理 适用人群 在校学生,小白用户,想学习知识的 有点基础,想要通过项…...
20个超级好用的 CSS 动画库
分享 20 个最佳 CSS 动画库。 它们中的大多数将生成纯 CSS 代码,而不需要任何外部库。 1.Animate.css 一个开箱即用型的跨浏览器动画库,可供你在项目中使用。 2.Magic Animations CSS3 一组简单的动画,可以包含在你的网页或应用项目中。 3.An…...
