提取蛋白质复合体结构中组装体的变换矩阵
PDB文件中,组装体变换矩阵(assembly transformation matrices)用于描述多聚体结构中各个单体之间的相对位置和取向。从蛋白质复合体 PDB 数据中提取每个组装体(assembly)的变换矩阵,通常需要解析 PDB 文件中包含的组装体信息。这些信息存储在 PDB 文件的 REMARK 350 字段中,该字段描述了如何通过旋转和平移操作将不同的链组合成蛋白质复合体。
以下是从 PDB 文件中提取每个组装体变换矩阵的示例代码:
示例代码
我们可以使用 Bio.PDB 模块(来自 biopython)解析 PDB 文件,提取组装体信息并生成相应的旋转矩阵和平移向量。代码如下
from Bio.PDB import PDBParser
import numpy as npdef extract_transform_matrices(pdb_file):"""从PDB文件中提取组装体的旋转和平移矩阵。:param pdb_file: PDB文件路径:return: 组装体的旋转和平移矩阵列表,按顺序返回每个组装体的旋转矩阵和对应的平移向量。"""parser = PDBParser(QUIET=True)structure = parser.get_structure('protein', pdb_file)transform_matrices = []with open(pdb_file, 'r') as f:lines = f.readlines()current_matrix = Nonecurrent_translation = Noneassembly_id = Nonetransformations = []for line in lines:if line.startswith('REMARK 350 APPLY THE FOLLOWING TO CHAINS'):# 提取组装体IDif 'AND' in line:assembly_id = line.split('AND')[1].strip()elif 'TO CHAINS' in line:assembly_id = line.split('TO CHAINS')[1].strip()elif line.startswith('REMARK 350 BIOMT'):# 提取旋转和平移矩阵matrix_row = int(line[18]) - 1 # 行索引,从1开始values = list(map(float, line[23:].split()))if matrix_row == 0:current_matrix = np.zeros((3, 3))current_translation = np.zeros(3)# 将前三个值存储在旋转矩阵中current_matrix[matrix_row, :] = values[:3]# 第四个值为平移向量的一部分current_translation[matrix_row] = values[3]# 当矩阵第三行已提取完,保存结果if matrix_row == 2:transformations.append((current_matrix, current_translation))return transformations# 示例使用
pdb_file = '/Users/zhengxueming/test/pdb_files/1a15.pdb' # 替换为你的PDB文件路径
transform_matrices = extract_transform_matrices(pdb_file)for i, (rotation, translation) in enumerate(transform_matrices):print(f"Assembly {i + 1}:")print("Rotation matrix:")print(rotation)print("Translation vector:")print(translation)print()
解析说明
-
REMARK 350字段:PDB 文件的这一部分描述了组装体的构建方式,包括如何对特定链进行旋转和平移。BIOMT行:记录了旋转矩阵和平移向量。每个组装体的矩阵通过三行BIOMT记录,每一行提供了旋转矩阵的一行和对应的平移分量。- 旋转矩阵是一个 3x3 矩阵,平移向量是一个 3x1 向量。
-
extract_transform_matrices()函数:解析 PDB 文件并提取每个组装体的变换矩阵。函数返回一个包含所有组装体变换的列表,每个元素是一个元组,包含旋转矩阵和平移向量。
变换矩阵的含义
- 旋转矩阵:表示如何旋转链来形成组装体。
- 平移向量:表示在旋转的基础上,链的三维坐标应如何平移。
这些变换矩阵可以用来将单个链或亚基的局部坐标变换为蛋白质复合体的整体坐标,从而得到完整的蛋白质结构。
相关文章:
提取蛋白质复合体结构中组装体的变换矩阵
PDB文件中,组装体变换矩阵(assembly transformation matrices)用于描述多聚体结构中各个单体之间的相对位置和取向。从蛋白质复合体 PDB 数据中提取每个组装体(assembly)的变换矩阵,通常需要解析 PDB 文件中…...
java程序员入行科目一之CRUD轻松入门教程(一)
之前在操作MySQL的时候,都是采用Navicat,或者cmd黑窗口。 无论使用什么方式和MySQL交互,大致步骤是这样的 建立连接,需要输入用户名和密码编写SQL语句,和数据库进行交互 这个连接方式不会变,但是现在需要 基…...
OpenHarmony鸿蒙开发( Beta5.0)智能油烟机开发实践
样例简介 本Demo是基于Hi3516开发板,使用开源OpenHarmony开发的应用。本应用主要功能有: 可以搜索本地指定目录的图片和视频文件,并可进行点击播放。 可以通过wifi接收来自手机的美食图片以及菜谱视频,让我们对美食可以边学边做…...
【GBase 8c V5_3.0.0 分布式数据库常用维护命令】
一、查看数据库状态/检查(gbase用户) 1.gha_ctl monitor 使用gha_ctl monitor查看节点运行情况(跟dcs的地址和端口) gha_ctl monitor -c gbase -l http://172.20.10.8:2379 -Hall |coordinator | datanode | gtm | server|dcs:必选字段。指定查看哪类集…...
破解AI生成检测:如何用ChatGPT降低论文的AIGC率
学境思源,一键生成论文初稿: AcademicIdeas - 学境思源AI论文写作 降低论文的“AIGC率”是个挑战,但有一些策略可以尝试。使用ChatGPT逐步调整和改进内容,使其更加自然和原创,降低AI检测工具识别出高“AIGC率”的概率…...
Python用MarkovRNN马尔可夫递归神经网络建模序列数据t-SNE可视化研究
原文链接:https://tecdat.cn/?p37634 本文聚焦于利用马尔可夫递归神经网络(MarkovRNN)结合树库展开建模工作。MarkovRNN 通过整合马尔可夫特性与离散随机变量来深入探索递归神经网络中的随机转换机制,旨在高效处理具有复杂潜在信…...
setup函数子传父普通写法
父组件 <template><div><p>接收的数据: {{ receivedData }}</p><Demo4Chiren2 custom-event"handleGetWeb" /></div> </template><script> import { ref } from vue; import Demo4Chiren2 from ./demo4Chiren2.vue…...
seafaring靶场漏洞测试攻略
步骤一:打开网页 一:sql注入漏洞 步骤一:测试回显点 -1 union select 1,2,3# 步骤二:查看数据库 -1 union select 1,2,database()# 步骤三:查看表名 -1 union select 1,2,group_concat(table_name) from informati…...
简单示例,搞懂PowerBI的ALL(),ALLEXCEPT()和ALLSELECTED()的区别
假设我们有如下数据,我们来统计下各班级的人数 我们在报表页里加上 班级’二班‘ 的筛选条件,此时PowerBI已经自动为我们显示了各班级人数:一班有3人,二班有1人。 根据我们的筛选条件,我们的统计人数应该是按照筛选器&…...
Collection
java.util.Collections:是集合工具类 作用:Collections不是集合,而是集合的工具类 常用API addAll package Collections;import java.util.ArrayList; import java.util.Collections;public class CollectionsDemo {public static void main(String[]…...
19章 泛型
1.修改程序清单19-1中的GenericStack类,使用数组而不是ArrayList来实现它。你应该在给栈添加新元素之前检查数组的大小如果数组满了,就创建一个新数组。该数组是当前数组大小的两倍,然后将当前数组的元素复制到新数组中。 public class Gene…...
基于python+django+mysql+Nanodet检测模型的水稻虫害检测系统
博主介绍: 大家好,本人精通Java、Python、C#、C、C编程语言,同时也熟练掌握微信小程序、Php和Android等技术,能够为大家提供全方位的技术支持和交流。 我有丰富的成品Java、Python、C#毕设项目经验,能够为学生提供各类…...
计算机网络27、28——Linux命令1、2
1、虚拟机网络前方路径内容 用户名机器名:/$ $表示普通用户,#表示root用户 2、Linux不分盘,都是绝对路径 /表示根目录,表示计算机文件夹下 ~是当前用户的家,表示home文件夹下自己的文件夹 3、bin文件夹下的是可执…...
【Python深度学习】逆强化学习(IRL):通俗揭开学习背后的奥秘
逆强化学习:揭开学习背后的奥秘 1. 引言 当我们谈论人工智能(AI)时,很多人第一时间会想到强化学习。强化学习是一种让智能体通过与环境的互动,逐渐学习到如何做出最优决策的学习方法。然而,有一种更加神奇的学习方式叫做 逆强化学习(Inverse Reinforcement Learning,…...
Linux:五种IO模型
1:五种IO模型 1:阻塞IO 阻塞IO: 在内核将数据准备好之前,系统调用会一直等待.所有的套接字,默认 都是阻塞方式。 2:非阻塞 IO 非阻塞 IO: 如果内核还未将数据准备好, 系统调用仍然会直接返回, 并且返回EWOULDBLOCK 错误码。 非阻塞 IO 往往需…...
ansible企业实战
ansible最佳实践 优化ansible速度 开启SSH长连接 修改 /etc/ansible/ansible.cfg里面的参数 ssh_args -C -o ControlMasterauto -o ControlPersist5d ControlPersist5d这个参数是设置整个长连接保持时间设置为5天,如果开启,通过SSH连接过的设备都会…...
面向对象程序设计之模板进阶(C++)
在之前我出过一篇博客介绍了模版的初阶:面向对象程序设计(C)模版初阶,接下来我们将进行模版的进阶学习,介绍关于更多模版的知识 1.非类型模版参数 模板参数分类类型形参与非类型形参 类型形参即:出现在模板参数列表中,跟在class或…...
电巢科技携Ecosmos元宇宙产品亮相第25届中国光博会
第25届中国国际光电博览会(“CIOE中国光博会”)今日在深圳国际会展中心盛大开幕。本届博览会以“光电引领未来,驱动应用创新”为主题,吸引了全球超过3700家优质光电企业参展,展示了光电产业的最新成果和前沿技术。 电…...
Redis 入门 - 收官
《Redis 入门》系列文章总算完成了,希望这个系列文章可以想入门或刚入门的同学提供帮助,希望能让你形成学习Redis系统性概念。 当时为什么要写这个系列文章,是因为我自己就是迷迷糊糊一路踩坑走过来的,我踩完的坑就踩完了&#x…...
Windows技术栈企业基础底座(1)-为基于Windows的Nginx安装证书
企业的基础环境是一个组织的信息化数字化底座。传统企业基础环境多种系统,应用交杂,多种技术栈使得深入运维成本极大,且人员知识技能较难复用,造成资源浪费。本系列旨在尝试推动这一理念, 建立Windows, 或linux聚焦的技术栈的企业…...
【git】把本地更改提交远程新分支feature_g
创建并切换新分支 git checkout -b feature_g 添加并提交更改 git add . git commit -m “实现图片上传功能” 推送到远程 git push -u origin feature_g...
GC1808高性能24位立体声音频ADC芯片解析
1. 芯片概述 GC1808是一款24位立体声音频模数转换器(ADC),支持8kHz~96kHz采样率,集成Δ-Σ调制器、数字抗混叠滤波器和高通滤波器,适用于高保真音频采集场景。 2. 核心特性 高精度:24位分辨率,…...
【C++进阶篇】智能指针
C内存管理终极指南:智能指针从入门到源码剖析 一. 智能指针1.1 auto_ptr1.2 unique_ptr1.3 shared_ptr1.4 make_shared 二. 原理三. shared_ptr循环引用问题三. 线程安全问题四. 内存泄漏4.1 什么是内存泄漏4.2 危害4.3 避免内存泄漏 五. 最后 一. 智能指针 智能指…...
通过MicroSip配置自己的freeswitch服务器进行调试记录
之前用docker安装的freeswitch的,启动是正常的, 但用下面的Microsip连接不上 主要原因有可能一下几个 1、通过下面命令可以看 [rootlocalhost default]# docker exec -it freeswitch fs_cli -x "sofia status profile internal"Name …...
机器学习的数学基础:线性模型
线性模型 线性模型的基本形式为: f ( x ) ω T x b f\left(\boldsymbol{x}\right)\boldsymbol{\omega}^\text{T}\boldsymbol{x}b f(x)ωTxb 回归问题 利用最小二乘法,得到 ω \boldsymbol{\omega} ω和 b b b的参数估计$ \boldsymbol{\hat{\omega}}…...
用 Rust 重写 Linux 内核模块实战:迈向安全内核的新篇章
用 Rust 重写 Linux 内核模块实战:迈向安全内核的新篇章 摘要: 操作系统内核的安全性、稳定性至关重要。传统 Linux 内核模块开发长期依赖于 C 语言,受限于 C 语言本身的内存安全和并发安全问题,开发复杂模块极易引入难以…...
DeepSeek越强,Kimi越慌?
被DeepSeek吊打的Kimi,还有多少人在用? 去年,月之暗面创始人杨植麟别提有多风光了。90后清华学霸,国产大模型六小虎之一,手握十几亿美金的融资。旗下的AI助手Kimi烧钱如流水,单月光是投流就花费2个亿。 疯…...
2025 后端自学UNIAPP【项目实战:旅游项目】7、景点详情页面【完结】
1、获取景点详情的请求【my_api.js】 // 引入公共的请求封装 import http from ./my_http.js// 登录接口(适配服务端返回 Token) export const login async (code, avatar) > {const res await http(/login/getWXSessionKey, {code,avatar}); };//…...
Qt 按钮类控件(Push Button 与 Radio Button)(1)
文章目录 Push Button前提概要API接口给按钮添加图标给按钮添加快捷键 Radio ButtonAPI接口性别选择 Push Button(鼠标点击不放连续移动快捷键) Radio Button Push Button 前提概要 1. 之前文章中所提到的各种跟QWidget有关的各种属性/函数/方法&#…...
在MobaXterm 打开图形工具firefox
目录 1.安装 X 服务器软件 2.服务器端配置 3.客户端配置 4.安装并打开 Firefox 1.安装 X 服务器软件 Centos系统 # CentOS/RHEL 7 及之前(YUM) sudo yum install xorg-x11-server-Xorg xorg-x11-xinit xorg-x11-utils mesa-libEGL mesa-libGL mesa-…...
