当前位置: 首页 > news >正文

2/12考试总结

时间安排

8:30–8:50 读题,T1 不知道是个啥,T2是个dp ,T3可能也是 dp 之类的。
8:50–9:30 T1,读了好几遍才理解了题意,对于部分分有爆搜。考虑正解,想到预处理后O(1) 查询,问题是如何由已知的信息得到所有可能询问的答案,想了几种 子集dp 之类的东西,都不太对。
9:30–10:20 T2,看了一眼发现有 70 分是送的。正解貌似可以前缀和优化一下什么的。仔细分析了一下发现不好维护,暴力前缀和预处理的话时间空间都不允许,尝试着化简式子看看能不能 O(1) 做,貌似做不了。
10:20–11:13 T3,分析题目可以找到一些性质,然后根据这个建图,部分分可以暴力在图上跑。考虑能不能推广,需要快速知道图上的信息,猜了好几个结论都是假的。
11:13–12:00 瞪T1,T3。
12:00–13:00 瞪T1 。

回顾反思

T1:
正解是 dfs 搜索,或者使用状压做类似过程,复杂度是 n2nn2^nn2n 的。
比赛时一开始读题理解题意耽误了一点时间。
题目中有 ∃∀\exist \forall∃∀ 两种逻辑运算,将 ∃\exist 当做限制,问题是如何预处理出一个限制是否被满足。考场上,我局限于先以某种方式钦定一个限制,然后考虑在限制下的所有可能状态的解,那么这样复杂度就是枚举限制的复杂度与枚举状态复杂度的积,是不能通过的。但是实际上,根本不需要事先钦定某个限制,可以直接将限制的钦定融进状态的枚举中,考虑直接一位一位枚举状态,对于某一位,讨论是采取限制 1 还是限制 2 ,然后得到在此限制下下一位的合法状态,递归进入下一位。这样,递归进入某一位是,之前的所有位的信息都能被有效利用,而非再次搜索产生冗余。
这道题,我在最开始题意的理解上出现了一些偏差,绕了一些弯子;其次,我局限于钦定限制然后找状态,但是实际上可以枚举状态然后讨论限制,边枚举边做;再者,我对 dfs 的复杂度没有信心,没有仔细去计算 dfs的实际复杂度。
要认真分析复杂度,一般的 dfs 会有很多不必要的冗余,若能够做到最大化利用每一段递归公共的部分减少重复冗余操作,其复杂度会极大的降低。
T2:
思路基本和正解相同,考虑组产生的分界,但是角度又略有不同。正解主要考虑是 A 组先满还是 B 组先满,而我则是考虑在给定的 K 的关键点内 B 组是否满了。这两种角度对于部分分计算的复杂度是一样的,但是我涉及的组合数整体的分布不如正解的 “亲近” ,比较难以优化计算;其次,正解的式子几乎只涉及了值域为 n 的 i 以及种数为 n\sqrt nn 的 K,那么枚举 K 对 i 暴力预处理就行了,而我还涉及到另一个值域为 n 的变量 xk ,于是预处理也很困难。于是进行不下去了。
还是要尝试多种角度的思考问题,不仅是这种思路能走多远的问题,更直接的,不同的角度会对式子产生不同的影响。
对于具体的计算方法,
对于每个询问涉及到某种分布或者某段的组合数的计算,直接计算或者预处理都不好做,可以考虑优化暴力,将询问对应的区间离线下来,对相应数值跑莫队,这样可以做到根号。
对于正解,其计算难点在于出现了以 k 为参数的式子,这个 k 值域是 1->n ,若对于每个 1-> n 都预处理是不现实的。但是注意题目条件 ∑k≤2∗n\sum k\leq 2*nk2n ,那么不同的 k 的种数最多只有 n\sqrt nn 级别,于是将 k 离线下来只对这根号个 k 预处理就可以了。
很多题目都涉及了对 ∑k≤lim\sum k\leq limklim 这个条件性质的利用,如该题中 k 种类数不超过根号、虚树等。

T3:
想到建图了,建了图,但是对于图的性质没有剖析完全,模型中出现了许多冗余边。具体的,正解的建图是若干条链,相邻的链连边,而我对于一条链与许多不相邻的链也连了边,但实际上这些边即使不加,也存在相应的等价的路径。于是我的图模型不像题解那样简洁,比较乱,也没有规律可循。
这种建模题,连边时要谨慎,考虑到这条边是否有加的必要,是否不需要这条边也能表现出相应的等价关系,精简模型,透露本质。
题目有充要性质:相同的 ai 对应的 pi 递减,且对于一个 pi 大于 i 之前最近的一个满足 aj=ai-1 的 pj 。由此建图,是若干条相连的链。
这个图比较简单,信息可以直接递推处理。

三道题都没有涉及什么比较复杂的算法和数据结构,T1是暴力题,T2是经典套路题,T3难度也不算很高,其实都在个人可控范围内,T1,T2都是应该 AC 的题目,理想分数应该在 250+ 以上。

相关文章:

2/12考试总结

时间安排 8:30–8:50 读题,T1 不知道是个啥,T2是个dp ,T3可能也是 dp 之类的。 8:50–9:30 T1,读了好几遍才理解了题意,对于部分分有爆搜。考虑正解,想到预处理后O(1) 查询,问题是如何由已知的信息得到所有…...

第三章虚拟机的克隆,快照,迁移删除

1.虚拟机的克隆 如果你已经安装了一台linux操作系统,你还想再更多的,没有必要再重新安装,你只需要克 隆就可以,看演示。 方式1,直接拷贝一份安装好的虚拟机文件,再用虚拟机打开这个文件方式2,使用vmware的…...

华为OD机试 - 任务总执行时长(Python)| 真题含思路

任务总执行时长 题目 任务编排服务负责对任务进行组合调度。 参与编排的任务又两种类型, 其中一种执行时长为taskA, 另一种执行时长为taskB。 任务一旦开始执行不能被打断,且任务可连续执行。 服务每次可以编排 num 个任务。 请编写一个方法,生成每次编排后的任务所有可…...

LeetCode 热题 C++ 114. 二叉树展开为链表

给你二叉树的根结点 root ,请你将它展开为一个单链表: 展开后的单链表应该同样使用 TreeNode ,其中 right 子指针指向链表中下一个结点,而左子指针始终为 null 。展开后的单链表应该与二叉树 先序遍历 顺序相同。 示例 1&#xf…...

Spring的事务控制-基于AOP的声明式事务控制

Spring的事务控制-基于AOP的声明式事务控制 Spring事务编程概述 事务是开发中必不可少的东西,使用JDBC开发时,我们使用connection对事务进行控制,使用MyBatis时,我们使用SqlSession对事务进行控制,缺点就是&#xff…...

SSO(单点登陆)

Single Sign On 一处登陆、处处可用 0、前置概念: 1)、单点登录业务介绍 早期单一服务器,用户认证。 缺点:单点性能压力,无法扩展 分布式, SSO(single sign on)模式 解决 : 用户身份信息独…...

线程和QObjects

QObject的可重入性: QThread继承了QObject,它发出信号以指示线程开始或完成执行,并提供一些插槽。 QObjects可以在多个线程中使用发出调用其他线程中槽的信号,并将事件发布到在其他线程中“活动”的对象。这是可能的&#xff0…...

最新中文版FL Studio21水果软件下载安装图文教程

FL Studio是目前流行广泛使用人数最多音乐编曲制作软件,这款软件相信广大网友并不陌生,今天带来的是FL中文版本,所有的功能都能在线编辑,用户直接就能操作,同时因为是21水果是最新版,所以增加了新的功能&am…...

pandas数据分析35——多个数据框实现笛卡尔积

什么是笛卡尔积。就是遍历所有组合的可能性。 比如第一个盒子有[1,2,3]三个号码球,第二个盒子有[4,5]两个号码球。那么从每个盒子里面分别拿一个球共有3*2两种可能性,其集合就是{[1,4],[2,4],[3,4],[1,5],[2,5],[3,5]},这个就是笛卡尔积。 三个盒子也是…...

【C语言学习笔记】:数组倒序排列,数组倒置

数组倒置就是将数组元素中的数据倒过来&#xff01; 举个例子&#xff0c;比如下面程序&#xff1a; #include <stdio.h>int main(void) { int a[5] {1, 2, 3, 4, 5}; int b[5]; //用来存放倒置后的数据 int i, j; for (i0, j4; i<5, j>0; i, --j)…...

sni+tomcat漏洞复现

sni SNI产生背景 SSL以及TLS&#xff08;SSL的升级版&#xff09;为客户端与服务器端进行安全连接提供了条件。但是&#xff0c;由于当时技术限制&#xff0c;SSL初期的设计顺应经典的公钥基础设施 PKI(Public Key Infrastructure)设计&#xff0c;PKI 认为一个服务器只为一个…...

Linux ALSA 之十:ALSA ASOC Machine Driver

ALSA ASOC Machine Driver一、Machine 简介二、ASoC Machine Driver2.1 Machine Driver 的 Platform Driver & Platform Device 驱动模型2.2 在 Probe() 中注册声卡三、snd_soc_register_card 函数3.1 bind DAIs3.2 New a sound card3.3 Create card new widgets3.4 Probe …...

Spring 面试题(一):Spring 如何处理全局异常?

❤️ 博客首页&#xff1a;水滴技术 &#x1f680; 支持水滴&#xff1a;点赞&#x1f44d; 收藏⭐ 留言&#x1f4ac; &#x1f338; 订阅专栏&#xff1a;Spring 教程&#xff1a;从入门到精通 文章目录1、如何处理全局异常2、代码示例2.1、定义统一的“响应结果对象”2.2、…...

Threadlocal为何引发内存泄漏问题

首先我们要先了解什么是泄漏问题和什么是内存溢出 内存泄漏表示程序员申请了内存&#xff0c;但是该内存一直无法被释放 内存溢出表示申请内存不足&#xff0c;就会报错 为何引发内存泄漏问题 因为每个线程都有自己独立的ThreadLocalMap对象&#xff0c;key为ThreadLocal&…...

如何写好 Python 的 Lambda 函数?

当你需要完成一件小工作时&#xff0c;在本地环境中使用这个函数&#xff0c;可以让工作如此得心应手&#xff0c;它就是 Lambda 函数。 Lambda 函数是 Python 中的匿名函数。有些人将它们简称为lambdas&#xff0c;它们的语法如下&#xff1a; lambda arguments: expression…...

大数据技术架构(组件)32——Spark:Spark SQL--Execute Engine

2.2、Spark SQL2.2.1、Execute EngineSparkSql的整体提交执行流程和Hive的执行流程基本上一致。站在通用的角度&#xff0c;对于SparkSql来说&#xff0c;从Sql到Spark的RDD执行需要经历两个大的阶段&#xff1a;逻辑计划和物理计划逻辑计划层面会把用户提交的sql转换成树型结构…...

Leetcode.1138 字母板上的路径

题目链接 Leetcode.1138 字母板上的路径 Rating &#xff1a; 1411 题目描述 我们从一块字母板上的位置 (0, 0)出发&#xff0c;该坐标对应的字符为 board[0][0]。 在本题里&#xff0c;字母板为board ["abcde", "fghij", "klmno", "pqr…...

一个自动配置 opengrok 多项目的脚本

前段时间在服务器上配置 opengrok 阅读代码&#xff0c;项目有很多个&#xff0c;一个一个手动配置比较繁琐。 我从搭建 tomcat 和 opengrok&#xff0c;到配置和索引完 5 个 Android 项目&#xff0c;用了差不多一整天。 要是再让我手动配置几个项目&#xff0c;估计真要崩溃…...

JAVA同步代码块 同步方法

JAVA同步代码块 & 同步方法 为了解决多线程操作共享数据时产生的安全问题 例如以下代码 if (ticket < 0) {// 卖完了break; } else {ticket--;System.out.println(Thread.currentThread().getName() "在卖票&#xff0c;还剩下" ticket "张")…...

分享111个助理类简历模板,总有一款适合您

分享111个助理类简历模板&#xff0c;总有一款适合您 111个助理类简历模板下载链接&#xff1a;https://pan.baidu.com/s/1JafYuLPQMmq37K4V0wiqWA?pwd8y54 提取码&#xff1a;8y54 Python采集代码下载链接&#xff1a;https://wwgn.lanzoul.com/iKGwb0kye3wj 设计师助理…...

QMC5883L的驱动

简介 本篇文章的代码已经上传到了github上面&#xff0c;开源代码 作为一个电子罗盘模块&#xff0c;我们可以通过I2C从中获取偏航角yaw&#xff0c;相对于六轴陀螺仪的yaw&#xff0c;qmc5883l几乎不会零飘并且成本较低。 参考资料 QMC5883L磁场传感器驱动 QMC5883L磁力计…...

【Zephyr 系列 10】实战项目:打造一个蓝牙传感器终端 + 网关系统(完整架构与全栈实现)

🧠关键词:Zephyr、BLE、终端、网关、广播、连接、传感器、数据采集、低功耗、系统集成 📌目标读者:希望基于 Zephyr 构建 BLE 系统架构、实现终端与网关协作、具备产品交付能力的开发者 📊篇幅字数:约 5200 字 ✨ 项目总览 在物联网实际项目中,**“终端 + 网关”**是…...

SpringCloudGateway 自定义局部过滤器

场景&#xff1a; 将所有请求转化为同一路径请求&#xff08;方便穿网配置&#xff09;在请求头内标识原来路径&#xff0c;然后在将请求分发给不同服务 AllToOneGatewayFilterFactory import lombok.Getter; import lombok.Setter; import lombok.extern.slf4j.Slf4j; impor…...

[Java恶补day16] 238.除自身以外数组的乘积

给你一个整数数组 nums&#xff0c;返回 数组 answer &#xff0c;其中 answer[i] 等于 nums 中除 nums[i] 之外其余各元素的乘积 。 题目数据 保证 数组 nums之中任意元素的全部前缀元素和后缀的乘积都在 32 位 整数范围内。 请 不要使用除法&#xff0c;且在 O(n) 时间复杂度…...

Swagger和OpenApi的前世今生

Swagger与OpenAPI的关系演进是API标准化进程中的重要篇章&#xff0c;二者共同塑造了现代RESTful API的开发范式。 本期就扒一扒其技术演进的关键节点与核心逻辑&#xff1a; &#x1f504; 一、起源与初创期&#xff1a;Swagger的诞生&#xff08;2010-2014&#xff09; 核心…...

力扣-35.搜索插入位置

题目描述 给定一个排序数组和一个目标值&#xff0c;在数组中找到目标值&#xff0c;并返回其索引。如果目标值不存在于数组中&#xff0c;返回它将会被按顺序插入的位置。 请必须使用时间复杂度为 O(log n) 的算法。 class Solution {public int searchInsert(int[] nums, …...

【生成模型】视频生成论文调研

工作清单 上游应用方向&#xff1a;控制、速度、时长、高动态、多主体驱动 类型工作基础模型WAN / WAN-VACE / HunyuanVideo控制条件轨迹控制ATI~镜头控制ReCamMaster~多主体驱动Phantom~音频驱动Let Them Talk: Audio-Driven Multi-Person Conversational Video Generation速…...

在Mathematica中实现Newton-Raphson迭代的收敛时间算法(一般三次多项式)

考察一般的三次多项式&#xff0c;以r为参数&#xff1a; p[z_, r_] : z^3 (r - 1) z - r; roots[r_] : z /. Solve[p[z, r] 0, z]&#xff1b; 此多项式的根为&#xff1a; 尽管看起来这个多项式是特殊的&#xff0c;其实一般的三次多项式都是可以通过线性变换化为这个形式…...

STM32HAL库USART源代码解析及应用

STM32HAL库USART源代码解析 前言STM32CubeIDE配置串口USART和UART的选择使用模式参数设置GPIO配置DMA配置中断配置硬件流控制使能生成代码解析和使用方法串口初始化__UART_HandleTypeDef结构体浅析HAL库代码实际使用方法使用轮询方式发送使用轮询方式接收使用中断方式发送使用中…...

作为测试我们应该关注redis哪些方面

1、功能测试 数据结构操作&#xff1a;验证字符串、列表、哈希、集合和有序的基本操作是否正确 持久化&#xff1a;测试aof和aof持久化机制&#xff0c;确保数据在开启后正确恢复。 事务&#xff1a;检查事务的原子性和回滚机制。 发布订阅&#xff1a;确保消息正确传递。 2、性…...