当前位置: 首页 > news >正文

【机器学习(九)】分类和回归任务-多层感知机(Multilayer Perceptron,MLP)算法-Sentosa_DSML社区版

文章目录

  • 一、算法概念
  • 二、算法原理
    • (一)感知机
    • (二)多层感知机
      • 1、隐藏层
      • 2、激活函数
        • sigma函数
        • tanh函数
        • ReLU函数
      • 3、反向传播算法
  • 三、算法优缺点
    • (一)优点
    • (二)缺点
  • 四、MLP分类任务实现对比
    • (一)数据加载和样本分区
      • 1、Python代码
      • 2、Sentosa_DSML社区版
    • (二)模型训练
      • 1、Python代码
      • 2、Sentosa_DSML社区版
    • (三)模型评估和模型可视化
      • 1、Python代码
      • 2、Sentosa_DSML社区版
  • 五、MLP回归任务实现对比
    • (一)数据加载和样本分区
      • 1、Python代码
      • 2、Sentosa_DSML社区版
    • (二)模型训练
      • 1、Python代码
      • 2、Sentosa_DSML社区版
    • (三)模型评估和模型可视化
      • 1、Python代码
      • 2、Sentosa_DSML社区版
  • 六、总结

一、算法概念

什么是多层感知机?
  多层感知机 (Multilayer Perceptron,MLP) 是一种人工神经网络,由多层神经元或节点组成,这些神经元或节点以分层结构排列。它是最简单且使用最广泛的神经网络之一,尤其适用于分类和回归等监督学习任务。
  多层感知器运作的核心原理在于反向传播,是用于训练网络的关键算法。在反向传播过程中,网络通过将误差从输出层反向传播到输入层来调整其权重和偏差。这个迭代过程可以微调模型的参数,使其能够随着时间的推移做出更准确的预测。
  MLP 通常包括以下部分:
  输入层:接收输入数据并将其传递到隐藏层。输入层中的神经元数量等于输入特征的数量。
  隐藏层:由一层或多层神经元组成,用于执行计算并转换输入数据。可以调整每层  中的隐藏层和神经元的数量,以优化网络性能。
  激活函数:对隐藏层中每个神经元的输出应用非线性变换。常见的激活函数包括 Sigmoid、ReLU、tanh 等。
  输出层:网络的最终输出,例如分类标签或回归目标。输出层中的神经元数量取决于具体的数据,例如分类问题中的类别数量。
  权重和偏差:可调节参数,决定相邻层神经元之间的连接强度以及每个神经元的偏差。这些参数在训练过程中学习,以尽量减少网络预测与实际目标值之间的差异。
  损失函数:衡量网络预测与实际目标值之间的差异。MLP 的常见损失函数包括回归任务的均方误差和分类任务的交叉熵。
  MLP 使用梯度下降等优化算法反向传播进行训练,根据损失函数的梯度迭代调整权重和偏差。这个过程持续到网络收敛到一组可最小化损失函数的最佳参数。

二、算法原理

(一)感知机

  感知机由两层神经元组成,输入层接收外界信号后传递给输出层,如下图所示,
在这里插入图片描述
  感知机模型就是尝试找到一条直线,能够把所有的二元类别分离开,给定输入 x \mathbf{x} x ,权重 W \mathbf{W} W ,和偏移 b b b ,感知机输出:
o = σ ( ⟨ w , x ⟩ + b ) o=\sigma\left( \langle\mathbf{w}, \mathbf{x} \rangle+b \right) o=σ(w,x+b)
σ ( x ) = { 1 x > 0 − 1 x ≤ 0 \quad\sigma( x )=\left\{\begin{array} {l l} {{1}} & {{\mathrm{~} x > 0}} \\ {{-1}} & {{\mathrm{~} x\leq0}} \\ \end{array} \right. σ(x)={11 x>0 x0
  初始化权重向量 w 和偏置 b,然后对于分类错误的样本不断更新w和b,直到所有样本都被正确分类。等价于使用批量大小为1的梯度下降,并使用如下的损失函数:
ℓ ( y , x , w ) = max ⁡ ( 0 , − y ⟨ w , x ⟩ ) \ell( y, {\bf x}, {\bf w} )=\operatorname* {m a x} ( 0,-y \langle{\bf w}, {\bf x} \rangle) (y,x,w)=max(0,yw,x⟩)
  感知机只能产生线性分割面,感知机算法的训练过程如下。
在这里插入图片描述

(二)多层感知机

1、隐藏层

  多层感知机则是在单层神经网络的基础上引入一个或多个隐藏层,使神经网络有多个网络层,下图为两个多层感知机示意图,分别为单隐层和双隐层
在这里插入图片描述
在这里插入图片描述
  多层感知机中的隐藏层和输出层都是全连接层,输入 X ∈ R n × d X \in\mathbb{R}^{n \times d} XRn×d ,其中, n n n 是批量大小, d d d 是输入特征的数量。输出 O ∈ R n × q O \in\mathbb{R}^{n \times q} ORn×q ,其中 q q q 是输出单元的数量。
  设隐藏层有 h h h 个隐藏单元,隐藏层的输出 H H H 是通过输入 X X X 与隐藏层的权重 W h ∈ R d × h W_{h} \in\mathbb{R}^{d \times h} WhRd×h 和偏置 b h ∈ R 1 × h b_{h} \in\mathbb{R}^{1 \times h} bhR1×h 计算得到的: H = X W h + b h H=X W_{h}+b_{h} H=XWh+bh
  输出层的权重为 W o ∈ R h × q W_{o} \in\mathbb{R}^{h \times q} WoRh×q ,偏置为 b o ∈ R 1 × q b_{o} \in\mathbb{R}^{1 \times q} boR1×q 。因此,输出层的输出 O O O 为: O = H W o + b o O=H W_{o}+b_{o} O=HWo+bo
  将隐藏层的输出 H H H 代入到输出层的方程中,得到如下计算过程:
O = ( X W h + b h ) W o + b o = X W h W o + b h W o + b o O=( X W_{h}+b_{h} ) W_{o}+b_{o}=X W_{h} W_{o}+b_{h} W_{o}+b_{o} O=(XWh+bh)Wo+bo=XWhWo+bhWo+bo
  通过联立后的式子可以看出,尽管引入了隐藏层,模型的计算仍然可以视作单层神经网络,其中,权重矩阵等于 W h W o W_{h} W_{o} WhWo,偏置等于 b h W o + b o b_{h} W_{o}+b_{o} bhWo+bo
  这表示,尽管引入了隐藏层,在不采用非线性激活函数的情况下,这个设计只能等价于单层神经网络。引入隐藏层的真正意义在于通过非线性激活函数(如ReLU、Sigmoid等)来引入复杂的非线性关系,使得模型具备更强的表达能力。

2、激活函数

  激活函数是 MLP的关键组成部分。它们将非线性引入网络,使其能够对复杂问题进行建模。如果没有激活函数,无论有多少层,MLP都相当于单层线性模型。
激活函数需要具备以下几点性质:

  1. 连续并可导(允许少数点上不可导),便于利用数值优化的方法来学习网络参数
  2. 激活函数及其导函数要尽可能的简单,有利于提高网络计算效率
  3. 激活函数的导函数的值域要在合适区间内,不能太大也不能太小,否则会影响训练的效率和稳定性
    以下列举常用的三个激活函数
sigma函数

s i g m a ( z ) = 1 1 + exp ⁡ ( − z ) sigma( z )=\frac{1} {1+\operatorname{e x p} (-z )} sigma(z)=1+exp(z)1
  sigma函数也称为 S \mathrm{S} S 型函数,可以将任何实值数映射到 0 0 0 1 1 1 之间的值。呈S形,具有明确定义的非零导数,这使其适合与反向传播算法一起使用。
在这里插入图片描述
  sigmoid函数的导数表达式为:
s i g m a ′ ( z ) = s i g m a ( z ) × ( 1 − s i g m a ( z ) ) sigma^{\prime} ( z )=sigma( z ) \times( 1-sigma ( z ) ) sigma(z)=sigma(z)×(1sigma(z))
  如下所示:
在这里插入图片描述

tanh函数

tanh ⁡ ( z ) = 1 − exp ⁡ ( − 2 z ) 1 + exp ⁡ ( − 2 z ) \operatorname{t a n h} ( z )=\frac{1-\operatorname{e x p} (-2z )} {1+\operatorname{e x p} (-2z )} tanh(z)=1+exp(2z)1exp(2z)
  双曲正切函数与逻辑函数类似,但输出值在-1和 1 1 1 之间。这种居中效果有助于加快训练期间的收敛速度。
在这里插入图片描述
  tanh导数表达式如下所示:
t a n h ′ ( z ) = 1 − tanh ⁡ 2 ( z ) tanh^{\prime} ( z)=1-\operatorname{t a n h}^{2} ( z ) tanh(z)=1tanh2(z)
  下面绘制了tanh函数的导数。当输入为0时,tanh函数的导数达到最大值1;当输入越偏离0时,tanh函数的导数越接近0。
在这里插入图片描述

ReLU函数

R e L U ( z ) = max ⁡ ( 0 , z ) \mathrm{R e L U} ( z )=\operatorname* {m a x} ( 0, z ) ReLU(z)=max(0,z)
  ReLU 函数因其简单性和有效性而被广泛应用于深度学习。如果输入值为正,则输出输入值;否则输出零。尽管 ReLU 在零处不可微,并且对于负输入具有零梯度,但它在实践中表现良好,有助于缓解梯度消失问题
在这里插入图片描述
  当输入为负数时,ReLU函数的导数为0;当输入为正数时,ReLU函数的导数为1,
  ReLU 函数的导数表达式为:
R e L U ′ ( z ) = { 1 i f z > 0 0 i f z ≤ 0 R e L U^{\prime} ( z )=\begin{cases} {{1}} & {{\mathrm{i f ~} z > 0}} \\ {{0}} & {{\mathrm{i f ~} z \leq0}} \\ \end{cases} ReLU(z)={10if z>0if z0
  下面绘制ReLU函数的导数,
在这里插入图片描述

3、反向传播算法

1、前向传播
  前向传播是反向传播的前提。在前向传播过程中,数据从输入层逐步传递至输出层,经过每一层的计算,最终得到预测输出。
  具体步骤如下:
  1、输入数据传递给神经网络的输入层。
  2、输入层经过一系列权重(W)和偏置(b)的线性运算,然后通过激活函数传递到隐藏层。
  3、逐层传递,直至数据到达输出层,输出层生成预测值 y ^ \hat{y} y^
  表达式如下:
y ^ = f ( W 3 ⋅ f ( W 2 ⋅ f ( W 1 ⋅ x + b 1 ) + b 2 ) + b 3 ) \hat{y}=f ( W_{3} \cdot f ( W_{2} \cdot f ( W_{1} \cdot x+b_{1} )+b_{2} )+b_{3} ) y^=f(W3f(W2f(W1x+b1)+b2)+b3)
  其中, W 1 , W 2 , W 3 W_{1}, W_{2}, W_{3} W1,W2,W3 是权重矩阵, b 1 , b 2 , b 3 b_{1}, b_{2}, b_{3} b1,b2,b3 是偏置, f ( ⋅ ) f ( \cdot) f() 是激活函数。
2、 损失函数
  在得到输出后,通过损失函数计算预测结果与真实标签之间的误差,常见的损失函数有:
  MSE(均方误差):通常用于回归问题,输出与标签之差的平方的均值。计算公式如下:
M S E = 1 n ∑ i = 1 n ( y i − y ^ i ) 2 MSE=\frac{1} {n} \sum_{i=1}^{n} ( y_{i}-\hat{y}_{i} )^{2} MSE=n1i=1n(yiy^i)2
  其中, y i y_{i} yi 是真实值, y ^ i \hat{y}_{i} y^i 是预测值, n n n 是样本数量。
  CE(交叉熵损失):通常用于回归问题。计算公式如下:
H ( p , q ) = − ∑ i = 1 n p ( x i ) log ⁡ q ( x i ) H(p,q)=-\sum_{i=1}^{n}p(x_{i}) \operatorname{log}q(x_{i}) H(p,q)=i=1np(xi)logq(xi)
  其中, p ( x i ) p ( x_{i} ) p(xi) 是真实分布, q ( x i ) q ( x_{i} ) q(xi) 是预测分布。
3、反向传播
  反向传播根据微积分中的链式规则,按相反的顺序从输入层遍历网络。用于权重更新,使网络输出更接近标签。
  假设有两个函数 y = f ( u ) y=f ( u ) y=f(u) u = g ( x ) u=g ( x ) u=g(x) ,根据链式法则, y y y x x x 的导数为:
∂ y ∂ x = ∂ y ∂ u ∂ u ∂ x \frac{\partial y} {\partial x}=\frac{\partial y} {\partial u} \frac{\partial u} {\partial x} xy=uyxu
  在神经网络中,损失函数 L L L 对某一层权重 W W W 的导数可以通过链式法则分解为:
∂ L ∂ W = ∂ L ∂ y ⋅ ∂ y ∂ W \frac{\partial L} {\partial W}=\frac{\partial L} {\partial y} \cdot\frac{\partial y} {\partial W} WL=yLWy
4、梯度下降
  在反向传播过程中,利用梯度下降算法来更新权重,使得损失函数的值逐渐减小。权重更新的公式为:
W ( h ) = W ( o ) − η ⋅ ∂ L ∂ W W^{(h )}=W^{( o )}-\eta\cdot\frac{\partial L} {\partial W} W(h)=W(o)ηWL
  其中, η \eta η 是学习率,决定了每次权重调整的步长大小, ∂ L ∂ W \frac{\partial L} {\partial W} WL 是损失函数相对于权重的梯度。

三、算法优缺点

(一)优点

  可以通过多个隐藏层和非线性激活函数,学习到更复杂的特征表示,从而提高模型的表达能力。
  可以用于分类、回归和聚类等各种机器学习任务,目在许多领域中取得了很好的效果。
  可以诵过并行计算和GPU加速等技术,高效地处理大规模数据集,适用于大规模深度学习应用。

(二)缺点

  参数较多,容易在训练集上过拟合,需要采取正则化、dropout等方法来缓解过拟合问题。
  通常需要大量的标记数据进行训练,并且在训练过程中需要较高的计算资源,包括内存和计算
能力。
  MLP的性能很大程度上依赖于超参数的选择。

四、MLP分类任务实现对比

(一)数据加载和样本分区

1、Python代码

from sklearn.datasets import load_iris# 加载iris数据集
iris = load_iris()
X, y = iris['data'], iris['target']# 样本分区
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

2、Sentosa_DSML社区版

  首先,利用数据读入中的文本算子对数据进行读取,
在这里插入图片描述
  然后连接样本分区算子划分训练集和测试集,
在这里插入图片描述
  再接类型算子,设置Feature列和Label列,
在这里插入图片描述

(二)模型训练

1、Python代码

  使用sklearn自动构建MLP模型

from sklearn.neural_network import MLPClassifier# 定义MLP分类器模型,使用l-bfgs优化算法,隐藏层设置为100, 50,最大迭代次数200,设置tol为0.000001
mlp_clf = MLPClassifier(hidden_layer_sizes=(100, 50), max_iter=200, alpha=1e-4,solver='lbfgs', tol=1e-6, random_state=42)
# 训练模型
mlp_clf.fit(X_train, y_train)# 预测训练集和测试集
y_train_pred = mlp_clf.predict(X_train)
y_test_pred = mlp_clf.predict(X_test)

2、Sentosa_DSML社区版

  连接多层感知机分类算子,右击算子,点击运行,可以得到多层感知机分类模型。右侧进行超参数等设置,隐藏层设置为(100, 50),使用l-bfgs优化算法,最大迭代次数200,设置收敛偏差为0.000001。
在这里插入图片描述

(三)模型评估和模型可视化

1、Python代码

from sklearn.metrics import accuracy_score, precision_recall_fscore_support# 计算训练集评估指标
accuracy_train = accuracy_score(y_train, y_train_pred)
precision_train, recall_train, f1_train, _ = precision_recall_fscore_support(y_train, y_train_pred, average='weighted')# 计算测试集评估指标
accuracy_test = accuracy_score(y_test, y_test_pred)
precision_test, recall_test, f1_test, _ = precision_recall_fscore_support(y_test, y_test_pred, average='weighted')# 输出训练集评估指标
print(f"Training Set Metrics:")
print(f"Accuracy: {accuracy_train * 100:.2f}%")
print(f"Weighted Precision: {precision_train:.2f}")
print(f"Weighted Recall: {recall_train:.2f}")
print(f"Weighted F1 Score: {f1_train:.2f}")# 输出测试集评估指标
print(f"\nTest Set Metrics:")
print(f"Accuracy: {accuracy_test * 100:.2f}%")
print(f"Weighted Precision: {precision_test:.2f}")
print(f"Weighted Recall: {recall_test:.2f}")
print(f"Weighted F1 Score: {f1_test:.2f}")from sklearn.metrics import confusion_matrix# 计算测试集的混淆矩阵
conf_matrix = confusion_matrix(y_test, y_test_pred)import matplotlib.pyplot as plt
from sklearn.inspection import permutation_importance# 使用 sklearn 提供的permutation_importance方法计算特征重要性
result = permutation_importance(mlp_clf, X_test, y_test, n_repeats=10, random_state=42)# 可视化特征重要性
plt.figure(figsize=(8, 6))
plt.barh(range(X.shape[1]), result.importances_mean, align='center')
plt.yticks(np.arange(X.shape[1]), iris['feature_names'])
plt.xlabel('Mean Importance Score')
plt.title('Permutation Feature Importance')
plt.show()

在这里插入图片描述

2、Sentosa_DSML社区版

  模型后可以连接评估算子,对模型的分类结果进行评估。算子流如下图所示,
在这里插入图片描述
  执行完成后可以得到训练集和测试集的评估,评估结果如下:
在这里插入图片描述
在这里插入图片描述
  右击模型,查看模型的模型信息,如下所示:
在这里插入图片描述

五、MLP回归任务实现对比

(一)数据加载和样本分区

1、Python代码

# 读入winequality数据集
df = pd.read_csv("D:/sentosa_ML/Sentosa_DSML/mlServer/TestData/winequality.csv")# 将数据集划分为特征和标签
X = df.drop("quality", axis=1)  # 特征,假设标签是 "quality"
Y = df["quality"]  # 标签# 划分数据集为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.2, random_state=42)

2、Sentosa_DSML社区版

  首先通过数据读入算子读取数据,
在这里插入图片描述
  中间接样本分区算子对训练集和测试集进行划分,
在这里插入图片描述
  然后接类型算子,设置Feature列和Label列,
在这里插入图片描述

(二)模型训练

1、Python代码

使用 scikit-learn 库中的多层感知机回归模型(MLPRegressor)

# 对数据进行标准化
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)# 定义MLP回归模型,使用l-bfgs优化算法,隐藏层设置为50,10,最大迭代次数300,设置tol为0.000001
mlp_reg = MLPRegressor(hidden_layer_sizes=(50, 10), solver='lbfgs', max_iter=300, tol=1e-6, random_state=42)# 训练模型
mlp_reg.fit(X_train_scaled, y_train)

2、Sentosa_DSML社区版

  连接标准化算子,对数据特征进行标准化计算,并执行得到标准化模型,
在这里插入图片描述
  其次,连接多层感知机回归算子,右击执行得到多层感知机回归模型。模型训练使用l-bfgs优化算法,隐藏层设置为50,10,最大迭代次数300,设置收敛偏差为0.000001,并选择计算特征重要性等。
在这里插入图片描述

(三)模型评估和模型可视化

1、Python代码

# 训练集上的评估
y_train_pred = mlp_reg.predict(X_train_scaled)r2_train = r2_score(y_train, y_train_pred)
mae_train = mean_absolute_error(y_train, y_train_pred)
mse_train = mean_squared_error(y_train, y_train_pred)
rmse_train = np.sqrt(mse_train)
mape_train = np.mean(np.abs((y_train - y_train_pred) / y_train)) * 100
smape_train = 100 / len(y_train) * np.sum(2 * np.abs(y_train - y_train_pred) / (np.abs(y_train) + np.abs(y_train_pred)))# 测试集上的评估
y_test_pred = mlp_reg.predict(X_test_scaled)r2_test = r2_score(y_test, y_test_pred)
mae_test = mean_absolute_error(y_test, y_test_pred)
mse_test = mean_squared_error(y_test, y_test_pred)
rmse_test = np.sqrt(mse_test)
mape_test = np.mean(np.abs((y_test - y_test_pred) / y_test)) * 100
smape_test = 100 / len(y_test) * np.sum(2 * np.abs(y_test - y_test_pred) / (np.abs(y_test) + np.abs(y_test_pred)))# 输出训练集评估指标
print(f"Training Set Metrics:")
print(f"R²: {r2_train:.2f}")
print(f"MAE: {mae_train:.2f}")
print(f"MSE: {mse_train:.2f}")
print(f"RMSE: {rmse_train:.2f}")
print(f"MAPE: {mape_train:.2f}%")
print(f"SMAPE: {smape_train:.2f}%")# 输出测试集评估指标
print(f"\nTest Set Metrics:")
print(f"R²: {r2_test:.2f}")
print(f"MAE: {mae_test:.2f}")
print(f"MSE: {mse_test:.2f}")
print(f"RMSE: {rmse_test:.2f}")
print(f"MAPE: {mape_test:.2f}%")
print(f"SMAPE: {smape_test:.2f}%")# 计算残差
residuals = y_test - y_test_pred# 使用 Seaborn 绘制带核密度估计的残差直方图
plt.figure(figsize=(8, 6))
sns.histplot(residuals, kde=True, bins=20)
plt.title('Residuals Histogram with KDE')
plt.xlabel('Residuals')
plt.ylabel('Frequency')
plt.grid(True)
plt.show()

在这里插入图片描述

2、Sentosa_DSML社区版

  模型后可接评估算子,对模型的回归结果进行评估。
在这里插入图片描述
  训练集和测试集的评估结果如下所示:
在这里插入图片描述
在这里插入图片描述
  右键查看模型信息,可以得到特征重要性等可视化计算结果。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

六、总结

  相比传统代码方式,利用Sentosa_DSML社区版完成机器学习算法的流程更加高效和自动化,传统方式需要手动编写大量代码来处理数据清洗、特征工程、模型训练与评估,而在Sentosa_DSML社区版中,这些步骤可以通过可视化界面、预构建模块和自动化流程来简化,有效的降低了技术门槛,非专业开发者也能通过拖拽和配置的方式开发应用,减少了对专业开发人员的依赖。
  Sentosa_DSML社区版提供了易于配置的算子流,减少了编写和调试代码的时间,并提升了模型开发和部署的效率,由于应用的结构更清晰,维护和更新变得更加容易,且平台通常会提供版本控制和更新功能,使得应用的持续改进更为便捷。

  为了非商业用途的科研学者、研究人员及开发者提供学习、交流及实践机器学习技术,推出了一款轻量化且完全免费的Sentosa_DSML社区版。以轻量化一键安装、平台免费使用、视频教学和社区论坛服务为主要特点,能够与其他数据科学家和机器学习爱好者交流心得,分享经验和解决问题。文章最后附上官网链接,感兴趣工具的可以直接下载使用

https://sentosa.znv.com/

相关文章:

【机器学习(九)】分类和回归任务-多层感知机(Multilayer Perceptron,MLP)算法-Sentosa_DSML社区版

文章目录 一、算法概念二、算法原理(一)感知机(二)多层感知机1、隐藏层2、激活函数sigma函数tanh函数ReLU函数 3、反向传播算法 三、算法优缺点(一)优点(二)缺点 四、MLP分类任务实现…...

渗透测试-文件上传绕过思路

文件上传绕过思路 引言 分享一些文件上传绕过的思路,下文内容多包含实战图片,所以打码会非常严重,可多看文字表达;本文仅用于交流学习, 由于传播、利用此文所提供的信息而造成的任何直接或者间接的后果及损失&#x…...

等保测评中的密码学应用分析

等保测评中密码学应用的分析 等保测评(信息安全等级保护测评)是中国信息安全领域的一项重要活动,旨在评估信息系统的安全性,并根据评估结果给予相应的安全等级。在等保测评中,密码学应用分析是评估信息系统安全性的关键…...

LCR 007. 三数之和

文章目录 1.题目2.思路3.代码 1.题目 LCR 007. 三数之和 给定一个包含 n 个整数的数组 nums,判断 nums 中是否存在三个元素 a ,b ,c *,*使得 a b c 0 ?请找出所有和为 0 且 不重复 的三元组。 示例 1&#xff1a…...

【入门01】arcgis api 4.x 创建地图、添加图层、添加指北针、比例尺、图例、卷帘、图层控制、家控件(附完整源码)

1.效果 2.代码 <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title></title><link rel"s…...

STL迭代器标签

STL&#xff08;标准模板库&#xff09;迭代器标签是用来标识迭代器类型的分类机制。这些标签有助于确定迭代器的特性&#xff0c;比如它是否可以进行随机访问、是否支持修改元素等。主要的迭代器标签包括&#xff1a; Input Iterator&#xff1a;只读迭代器&#xff0c;可以顺…...

容器学习之SparseArray源码解析

1、SparseArray是android sdk 提供集合类&#xff0c;主要用来替换key 为int类型&#xff0c;value为Object类型的Hashmap 2、SparseArray和HashMap相比优缺点&#xff1a; 优点&#xff1a; 1、SparseArray存在一个int[]keys, 因此避免自动装箱 2、SparseArray扩容时只需要数…...

信创改造技术介绍

目录 服务发现和注册 Sentinel 核心功能 典型应用场景 gateway 网关的主要功能 Spring Cloud Gateway Kong Kong 的主要功能 Kong 的架构&#xff1a; Kong 的使用场景&#xff1a; Kong 的部署模式&#xff1a; 优势 Gateway与Sentinel区别 Gateway Sentinel …...

【可见的点——欧拉函数】

在数论&#xff0c;对正整数n&#xff0c;欧拉函数是小于或等于n的正整数中与n互质的数的数目&#xff08;不包括1&#xff09; 题目 思路 有三个点比较特殊&#xff08;因为一来这三个点一定可见&#xff0c;同时也无法用gcd 1判断&#xff09;&#xff1a;&#xff08;0&am…...

Maven重点学习笔记(包入门 2万字)

Maven依赖管理项目构建工具 尚硅谷 5h 2023最新版 一&#xff0c;Maven简介 1.为什么学习Maven 1.1, Maven是一个依赖管理工具 1️⃣ jar包的规模 随着我们使用越来越多的框架&#xff0c;或者框架封装程度越来越高&#xff0c;项目中使用的jar包也越来越多。项目中&…...

1.分页查询(后端)—— Vue3 + SpringCloud 5 + MyBatisPlus + MySQL 项目系列(基于 Zulu 11)

本手册是基于 Vue3 SpringCloud5 MyBatisPlus MySQL 的项目结构和代码实现&#xff0c;旨在作为一个教学案例进行讲解。为了使案例更具普适性&#xff0c;文档中的公司名称、实体类、表名以及字段名称等敏感信息均已脱敏。 项目结构概述 项目采用标准的分层架构&#xff0…...

机器学习与深度学习的区别:深入理解与应用场景

在人工智能&#xff08;AI&#xff09;的广阔领域中&#xff0c;机器学习和深度学习是两个核心概念&#xff0c;它们虽然紧密相关&#xff0c;但在定义、技术、数据处理能力、应用场景等方面存在显著差异。本文将深入探讨这些区别&#xff0c;帮助读者更好地理解并选择合适的技…...

C++学习笔记(45)

322、循环队列、信号量、生产/消费者模型的源代码 一、demo1.cpp // demo1.cpp&#xff0c;本程序演示循环队列的使用。 #include "_public.h" int main() { using ElemTypeint; squeue<ElemType,5> QQ; ElemType ee; // 创建一个数据元素。 cout << &qu…...

【2】图像视频的加载和显示

文章目录 【2】图像视频的加载和显示一、代码在哪写二、创建和显示窗口&#xff08;一&#xff09;导入OpenCV的包cv2&#xff08;二&#xff09;创建窗口&#xff08;三&#xff09;更改窗口大小 & 显示窗口&#xff08;四&#xff09;等待用户输入补充&#xff1a;ord()函…...

1. BOOT.BIN 2. 固化 3. 启动 4. SDK 5. 文件

在进行FPGA的开发与固化过程中&#xff0c;生成BOOT.BIN文件是一个重要的步骤。BOOT.BIN文件通常包含了系统启动所需的不同文件&#xff0c;以下是如何创建和使用该文件的详细说明。 ### 生成BOOT.BIN文件的步骤 1. **方法一&#xff1a;通过项目构建** - 右键单击项目&#xf…...

vue按钮接收键盘回车事件

了解了&#xff01;如果您想让 Submit 按钮在按下回车键时被触发&#xff0c;可以在 Vue 组件中监听全局的键盘事件。以下是实现这一功能的示例&#xff1a; 示例代码 <template><div><inputtype"text"v-model"inputValue"placeholder&qu…...

腾讯云点播及声音上传

文章目录 1、开通腾讯云点播2、获取腾讯云API密钥3、完成声音上传3.1、引入依赖3.2、参考&#xff1a;接入点地域3.3、参考&#xff1a;任务流设置3.4、首先修改配置&#xff1a;3.4.1、 3.5、TrackInfoApiController --》 uploadTrack()3.6、VodServiceImpl --》 uploadTrack(…...

如何查看服务器是否有raid阵列卡以及raid类型

要查看服务器是否配置了RAID阵列卡以及RAID的类型&#xff0c;可以使用多种方法。以下是一些常用的命令和步骤&#xff1a; 1. 使用 lspci 命令 这个命令可以列出所有的PCI设备&#xff0c;包括RAID控制器。 lspci | grep -i raid 如果输出中有RAID相关的设备信息&#xff0c;那…...

工博会动态 | 来8.1馆 看桥田如何玩转全场

北京时间2024年9月24日&#xff0c;中国国际工业博览会开幕&#xff0c;桥田智能&#xff08;8.1馆A001&#xff09;推出心意三重奏&#xff0c;有没有小伙伴们发现呢&#xff1f;现在&#xff0c;让我们一起city walk下&#xff01; 桥田显眼包横空出道 有小伙伴已经发现&…...

新版torch_geometric不存在uniform、maybe_num_nodes函数问题(Prune4ED论文报错解决)

这是在复现论文“Towards accurate subgraph similarity computation via neural graph pruning”时遇到的报错。 ImportError: cannot import name uniform from torch_geometric.nn.pool.topk_pool 一、报错原因 论文作者使用的是2.1.0版本的torch_geometric。而我安装了2.…...

实现简易 vuedraggable 的拖拽排序功能

一、案例效果 拖拽计数4实现手动排序 二、案例代码 <draggable:list"searchResult.indicator":group"{ name: indicators }"item-key"field"handle".drag-handle-icon"><divclass"field-item"v-for"(item…...

第L2周:机器学习|线性回归模型 LinearRegression:2. 多元线性回归模型

本文为365天深度学习训练营 中的学习记录博客原作者&#xff1a;K同学啊 任务&#xff1a; ●1. 学习本文的多元线形回归模型。 ●2. 参考文本预测花瓣宽度的方法&#xff0c;选用其他三个变量来预测花瓣长度。 一、多元线性回归 简单线性回归&#xff1a;影响 Y 的因素唯一&…...

JavaScript的条件语句

if条件语句 if结构先判断一个表达式的布尔值&#xff0c;然后根据布尔值的真伪&#xff0c;执行不同的语句。所谓布尔值&#xff0c;指的是JavaScript 的两个特殊值&#xff0c;true表示真&#xff0c;false表示伪。 if语句语法规范 if(布尔值){语句;}var m3if(m3){console.l…...

vue3 vite模式配置测试,开发、生产环境以及代理配置

1、首先在根目录下创建三个文本文件&#xff1a;.env.development&#xff0c;.env.production&#xff0c;.env.test .env.development中的内容为&#xff1a; // 开发环境 .env.development NODE_ENV development VITE_APP_MODE development VITE_OUTPUTDIR dist_dev /…...

【rabbitmq-server】安装使用介绍

在 1050a 系统下安装 rabbitmq-server 服务以及基本配置;【注】:改方案用于A版统信服务器操作系统 文章目录 功能概述功能介绍一、安装软件包二、启动服务三、验证四、基本配置功能概述 RabbitMQ 是AMQP的实现,高性能的企业消息的新标准。RabbitMQ服务器是一个强大和可扩展…...

Kafka系列之:安装部署CMAK,CMAK管理大型Kafka集群参数调优

Kafka系列之:安装部署CMAK,CMAK管理大型Kafka集群参数调优 一、CMAK二、要求三、配置四、启动服务五、使用 Security 启动服务六、消费者/生产者滞后七、从 Kafka Manager 迁移到 CMAK八、CMAK管理大型Kafka集群参数调优九、后台运行CMAK十、输出日志一、CMAK CMAK(之前称为…...

c语言200例 64

大家好&#xff0c;欢迎来到无限大的频道。 今天带领大家来学习c语言。 题目要求&#xff1a; 设计一个进行候选人的选票程序。假设有三位候选人&#xff0c;在屏幕上输入要选择的候选人姓名&#xff0c; 有10次投票机会&#xff0c;最后输出每个人的得票结果。好的&#xff…...

[leetcode]216_组合总和III_给定数字范围且输出无重复

找出所有相加之和为 n 的 k 个数的组合&#xff0c;且满足下列条件&#xff1a; 只使用数字1到9 每个数字 最多使用一次 返回 所有可能的有效组合的列表 。该列表不能包含相同的组合两次&#xff0c;组合可以以任何顺序返回。示例 1: 输入: k 3, n 7 输出: [[1,2,4]] 解释: 1…...

Doris 2.x 安装及使用

Doris 2.x 安装及使用 简介 Apache Doris 是一款基于 MPP 架构的高性能、实时的分析型数据库&#xff0c;以高效、简单、统一的特点被人们所熟知&#xff0c;仅需亚秒级响应时间即可返回海量数据下的查询结果&#xff0c;不仅可以支持高并发的点查询场景&#xff0c;也能支持…...

MySQL字符集设置

MySQL字符集设置 一、查看当前配置的字符集 \s;示例 MariaDB [(none)]> \s -------------- mysql Ver 15.1 Distrib 5.5.68-MariaDB, for Linux (x86_64) using readline 5.1Connection id: 11 Current database: Current user: rootlocalhost SSL: …...