当前位置: 首页 > news >正文

Pandas -----------------------基础知识(四)

自定义函数

Series

加载数据

import pandas as pd
df = pd.DataFrame({'Age': [20, 25, 30, 35, 40]})
df

# 目标: 让 Age 列 的每个元素 + num1 + num2
def add_nums(x,num1,num2):return x + num1 + num2
df['Age'].apply(add_nums,num1 =2,num2 =3)
法二 df['Age'].apply(lambda x ,num1 ,num2 : x+num1+num2 , num1 =2,num2 =3)

# 目标: 输出 偶数

加载数据

df = pd.DataFrame({'vals': [15, 20, 33, 40, 50]})

def oushu(x):return x %2 == 0df[df['vals'].apply(oushu)]
法二
df[df['vals'].apply(lambda x : x %2 == 0)]

案例

加载数据

import pandas as pd# 加载数据
df = pd.read_csv('./data/b_LJdata.csv')copy_df = df.head().copy()
copy_df
如果区域 是 天通苑租房 就改成 昌平区, 否则改成其他区
法一
def change_area(x):if x == '天通苑租房':return '昌平区'else: return '其他区'
copy_df['区域']=copy_df['区域'].apply(change_area)
copy_df法二
copy_df = df.head().copy()
def change_area(x,arg1,arg2):if x == '天通苑租房':return arg1else: return arg2
copy_df['区域'] =copy_df['区域'].apply(change_area, arg1 ='昌平区',arg2 ='其他区')
copy_df法三
copy_df = df.head().copy()copy_df['区域'] = copy_df['区域'].apply(lambda x,arg1,arg2:arg1 if x=='天通苑租房' else arg2 ,args=('昌平区','其他区'))
copy_df

 df

axis=0  表示 列处理  
axis=1  表示 行处理
# 目标: 获取每一列的和
df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]})
df
法一
def sum_col(df):return df.sum(axis=0)
re = df.apply(sum_col)
re法二
re = df.apply(lambda df: df.sum(), axis=0)
re

# 目标1: 链家将 天通苑租房 提高 2000 块 (行处理)
def change_price(df_obj):if df_obj['区域'] == '天通苑租房':df_obj['价格'] += 2000return df_objcopy_df = copy_df.apply(change_price,axis=1)
copy_df

# 目标2: 包租公将所有房租 涨 1000 块 (列处理)
def change_price_2(df_obj):if df_obj._name  == '价格':df_obj += 1000return df_objcopy_df = copy_df.apply(change_price_2,axis=0)        
copy_df

单元格自定义

 加载数据

import pandas as pd# 创建一个示例数据框
data = {'Col1': [10, 20, 30],'Col2': [40, 50, 60],'Col3': [70, 80, 90]}
df = pd.DataFrame(data)
df
法一:
def fn(x):return x * 3df = df.applymap(fn)df法二:
df = df.applymap(lambda df:df*3)
df

案例

# 目标: 只要值是 '2室1厅' 就改成 '3室2厅'(函数版)

加载数据

import pandas as pd# 加载数据
df = pd.read_csv('./data/b_LJdata.csv')copy_df = df.head().copy()
copy_df

法一:
def fn(x):if x == '2室1厅':return '3室2厅'else: return x
copy_df = copy_df.applymap(fn)
copy_df法二:
copy_df = df.head().copy()
copy_df = copy_df.applymap(lambda x:'3室2厅' if x == '2室1厅' else x)
copy_df

相关文章:

Pandas -----------------------基础知识(四)

自定义函数 Series 加载数据 import pandas as pd df pd.DataFrame({Age: [20, 25, 30, 35, 40]}) df # 目标: 让 Age 列 的每个元素 num1 num2 def add_nums(x,num1,num2):return x num1 num2 df[Age].apply(add_nums,num1 2,num2 3) 法二 df[Age].apply(lambda x ,num1…...

鼎阳加油-IOC关键技术问题的解决记

鼎阳SDS6204示波器EPICS IOC的搭建-CSDN博客 这款示波器在labview下工作的很好,以前搭建逐束团3D系统时连续几个月不间断的工作连接从没断过线,并做过速率测试,单通道时10Hz的波形更新速率都可以达到: 鼎阳SDS6204示波器波形读取…...

【HarmonyOS】TaskPool非阻塞UI

TaskPool方法不会阻塞UI,如果做上传图片的功能加载Loading记得使用TaskPool,Promise、Async/Await都会阻塞UI 【引言】 发现Promise可能会阻塞UI,尝试使用async或await,但发现它们仍然会导致阻塞。后来看到chaoxiaoshu回复的Tas…...

关于使用/bin/sh -c 用于Dockerfile的Entrypoint的问题

问题描述 相同的dockerfile,使用不同的基础镜像制作镜像1号进程不相同 ENTRYPOINT都是: /bin/sh -c pre-start.sh && myblockserver 的形式 就是执行多个命令命令,最后的一个命令是阻塞的 镜像1: 1号进程是 /bin/sh -c pre-start…...

JS---获取浏览器可视窗口的尺寸

innerHeight 和 innerWidth 这两个方法分别是用来获取浏览器窗口的宽度和高度&#xff08;包含滚动条的&#xff09; <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta http-equiv"X-UA-Compatible&q…...

对抗攻击方法详解:梯度攻击、转移攻击与模型集成攻击

对抗攻击方法详解&#xff1a;梯度攻击、转移攻击与模型集成攻击 近年来&#xff0c;随着深度学习模型在各个领域取得惊人突破&#xff0c;对抗攻击&#xff08;Adversarial Attack&#xff09; 逐渐成为研究热点。对抗攻击旨在通过在输入数据上施加精心设计的微小扰动&#x…...

GPU并行效率问题——通过MPS提升GPU计算收益

GPU并行效率问题——通过MPS提升GPU计算收益_gpu mps-CSDN博客...

patch 命令:补丁的应用

一、命令简介 ​diff​ 和 patch​ 是传统的文件比较和应用差异的工具&#xff0c;而 git​ 是一个更现代、功能更全面的版本控制系统&#xff0c;它内置了 diff​ 和 patch​ 的功能&#xff0c;并且提供了更多用于代码管理和协作的高级特性。 diff, patch 和 git 之间的关系…...

仓颉编程语言4,遇到BUG求助

本来准备整仓颉链接Mysql数据库。参考&#xff1a;GitCode - 全球开发者的开源社区,开源代码托管平台 这种方式是拿mysql官方的dll&#xff0c;编译一下&#xff0c;然后再封装成仓颉数据库驱动。这种方式不够逼格&#xff0c;所以准备解析mysql网络协议&#xff0c;从0开始写…...

SpringIOCDI

1.IOC 1.1.IOC概述 IOC&#xff1a; Inversion Of Control&#xff0c;简称IOC&#xff0c;也被称为控制反转。对象的创建权由程序员主动创建转移到容器&#xff0c;由容器创建、管理对象&#xff0c;这种思想称为控制反转。这个容器称为IOC容器或Spring容器被IOC容器创建、管…...

单细胞Seruat和h5ad数据格式互换(R与python)方法学习和整理

SeruatV4数据转化为h5ad格式数据 1、导入(R) rm(list ls()) library(Seurat) library(qs) library(reticulate) library(hdf5r) library(sceasy) library(BiocParallel) register(MulticoreParam(workers 4, progressbar TRUE)) scRNA <- qread("sc_dataset.qs&q…...

分布式难题-三座大山NPC

文章目录 1. 三座大山 NPC 的概念2. NPC 细分理解2.1. Network Delay 网络延迟2.2. Process Pause 进程暂停2.3. Clock Drift 时钟漂移Is the Algorithm Asynchronous? 本文参考&#xff1a; RedLock红锁安全性争论&#xff08;上&#xff09; https://martin.kleppmann.com/…...

两个方法教你设置Excel密码,防止修改和复制Excel表格内容

EXCEL是一款功能强大的电子表格软件&#xff0c;广泛用于各个地方。然而&#xff0c;对于一些重要的表格文件需要通过设置密码来限制大就的修改和复制权限。因而&#xff0c;对于一个EXCEL表格&#xff0c;通过密码设置大家有访问表格的权限&#xff0c;但无法修改数据的权限。…...

Java解析Excel文件

目录 背景 技术选型 开源Java框架选型 1. Apache POI 2. EasyExcel 收费Java框架选型 1. Spire.XLS for java 2. Aspose 总结 背景 在低代码产品的研发过程中&#xff0c;为用户提供数据导入导出的能力时&#xff0c;无法避免的就是对EXCEL解析的能力&#xff0c;所以本篇通过介…...

Require:基于雪花算法完成一个局部随机,全局离散没有热点切唯一的数值Id生成器。

【雪花算法】雪花算法&#xff08;Snowflake Algorithm&#xff09;是Twitter开源的用于生成唯一ID的算法&#xff0c;它可以在分布式系统中生成唯一的64位长整数ID。这种ID生成方式既保证了趋势递增&#xff0c;又保证了在不同数据中心、不同机器上生成的ID的唯一性。 符号位&…...

libevent - Macro function

TAILQ_INIT /** Tail queue functions.* 尾队列的头结点初始化为空队列。*/ #define TAILQ_INIT(head) do { \(head)->tqh_first NULL; \(head)->tqh_last &(head)->tqh_first; \ } while (/*CONSTCOND*/0)TAILQ_INIT 宏是一个用于初始化尾队列头部…...

408算法题leetcode--第17天

101. 对称二叉树 101. 对称二叉树思路&#xff1a;递归&#xff0c;对称即两个子树的左边和右边分别一样&#xff1b;一个子树是左中右遍历&#xff0c;另一个是右中左遍历&#xff1b;写的时候可以分三步&#xff0c;确定函数参数以及返回类型&#xff0c;确定终止条件&#…...

机器人顶刊IEEE T-RO发布无人机动态环境高效表征成果:基于粒子的动态环境连续占有地图

摘要&#xff1a;本研究有效提高了动态环境中障碍物建模的精度和效率。NOKOV度量动作捕捉系统助力评估动态占用地图在速度估计方面的性能。 近日&#xff0c;上海交通大学、荷兰代尔夫特理工研究团队在机器人顶刊IEEE T-RO上发表题为Continuous Occupancy Mapping in Dynamic …...

spring-boot web + vue

依赖的软件 maven 1. 官网下载zip 文件&#xff0c;比如apache-maven-3.9.9-bin.zip 2. 解压到某个盘符&#xff0c;必须保证父亲目录的名字包含英文&#xff0c;数字&#xff0c;破折号&#xff08;-&#xff09; 3. 设置环境变量M2_HOME, 并将%M2_HOME%\bin添加到windown…...

HDFS分布式文件系统01-HDFS架构与SHELL操作

HDFS分布式文件系统 学习目标第一课时知识点1-文件系统的分类单机文件系统网络文件系统分布式文件系统 知识点2-HDFS架构知识点3-HDFS的特点知识点4-HDFS的文件读写流程知识点5-HDFS的健壮性 第二课时知识点1-HDFS的Shell介绍HDFS Shell的语法格式如下。HDFS Shell客户端命令中…...

MPNet:旋转机械轻量化故障诊断模型详解python代码复现

目录 一、问题背景与挑战 二、MPNet核心架构 2.1 多分支特征融合模块(MBFM) 2.2 残差注意力金字塔模块(RAPM) 2.2.1 空间金字塔注意力(SPA) 2.2.2 金字塔残差块(PRBlock) 2.3 分类器设计 三、关键技术突破 3.1 多尺度特征融合 3.2 轻量化设计策略 3.3 抗噪声…...

大数据零基础学习day1之环境准备和大数据初步理解

学习大数据会使用到多台Linux服务器。 一、环境准备 1、VMware 基于VMware构建Linux虚拟机 是大数据从业者或者IT从业者的必备技能之一也是成本低廉的方案 所以VMware虚拟机方案是必须要学习的。 &#xff08;1&#xff09;设置网关 打开VMware虚拟机&#xff0c;点击编辑…...

将对透视变换后的图像使用Otsu进行阈值化,来分离黑色和白色像素。这句话中的Otsu是什么意思?

Otsu 是一种自动阈值化方法&#xff0c;用于将图像分割为前景和背景。它通过最小化图像的类内方差或等价地最大化类间方差来选择最佳阈值。这种方法特别适用于图像的二值化处理&#xff0c;能够自动确定一个阈值&#xff0c;将图像中的像素分为黑色和白色两类。 Otsu 方法的原…...

IT供电系统绝缘监测及故障定位解决方案

随着新能源的快速发展&#xff0c;光伏电站、储能系统及充电设备已广泛应用于现代能源网络。在光伏领域&#xff0c;IT供电系统凭借其持续供电性好、安全性高等优势成为光伏首选&#xff0c;但在长期运行中&#xff0c;例如老化、潮湿、隐裂、机械损伤等问题会影响光伏板绝缘层…...

爬虫基础学习day2

# 爬虫设计领域 工商&#xff1a;企查查、天眼查短视频&#xff1a;抖音、快手、西瓜 ---> 飞瓜电商&#xff1a;京东、淘宝、聚美优品、亚马逊 ---> 分析店铺经营决策标题、排名航空&#xff1a;抓取所有航空公司价格 ---> 去哪儿自媒体&#xff1a;采集自媒体数据进…...

中医有效性探讨

文章目录 西医是如何发展到以生物化学为药理基础的现代医学&#xff1f;传统医学奠基期&#xff08;远古 - 17 世纪&#xff09;近代医学转型期&#xff08;17 世纪 - 19 世纪末&#xff09;​现代医学成熟期&#xff08;20世纪至今&#xff09; 中医的源远流长和一脉相承远古至…...

Python Ovito统计金刚石结构数量

大家好,我是小马老师。 本文介绍python ovito方法统计金刚石结构的方法。 Ovito Identify diamond structure命令可以识别和统计金刚石结构,但是无法直接输出结构的变化情况。 本文使用python调用ovito包的方法,可以持续统计各步的金刚石结构,具体代码如下: from ovito…...

Python网页自动化Selenium中文文档

1. 安装 1.1. 安装 Selenium Python bindings 提供了一个简单的API&#xff0c;让你使用Selenium WebDriver来编写功能/校验测试。 通过Selenium Python的API&#xff0c;你可以非常直观的使用Selenium WebDriver的所有功能。 Selenium Python bindings 使用非常简洁方便的A…...

《信号与系统》第 6 章 信号与系统的时域和频域特性

目录 6.0 引言 6.1 傅里叶变换的模和相位表示 6.2 线性时不变系统频率响应的模和相位表示 6.2.1 线性与非线性相位 6.2.2 群时延 6.2.3 对数模和相位图 6.3 理想频率选择性滤波器的时域特性 6.4 非理想滤波器的时域和频域特性讨论 6.5 一阶与二阶连续时间系统 6.5.1 …...

C++中vector类型的介绍和使用

文章目录 一、vector 类型的简介1.1 基本介绍1.2 常见用法示例1.3 常见成员函数简表 二、vector 数据的插入2.1 push_back() —— 在尾部插入一个元素2.2 emplace_back() —— 在尾部“就地”构造对象2.3 insert() —— 在任意位置插入一个或多个元素2.4 emplace() —— 在任意…...