代码随想录算法训练营第十四天|递归 226.翻转二叉树 101. 对称二叉树 104.二叉树的最大深度 111.二叉树的最小深度
226.翻转二叉树
翻转一棵二叉树。

思路:
在这里需要注意的是,在递归的时候唯独中序遍历是不可用的,这是因为先对左子树进行了反转,又对自身进行了反转,对自身反转后原本的左子树变成了右子树,如果此时又轮到对右子树进行翻转,相当于原本的右子树没操作而对原来的左子树进行了两次翻转。
所以我们选择前序遍历,根据递归三部曲:
1.确定参数和返回值:参数是节点,而返回值可以是返回根节点,但我个人在一开始做的时候人为自定义了一个新的函数来专门对二叉树进行反转,是直接对二叉树进行操作的,所以认为不需要返回值,选择void或者->None
2.确定终止条件:当左孩子和右孩子都不存在的时候说明此时翻转无意义,此时return。(但规范写法的思路是当节点为空的时候return,我想这是因为如果只有一个左(右)孩子的时候依然会调用函数,这个时候有一个孩子节点是为空的,所以此时在定义递归函数的时候肯定还是需要定义一个条件:当节点为空时return,自然就不需要我一开始设置的这个条件了)
3.单层递归的逻辑:我选择最好理解的前序遍历,逻辑就是先对本节点进行操作,即对本节点的左右孩子进行互换,然后对左子树(左孩子节点)进行反转操作(调用递归),再对右子树进行反转操作。
根据以上思路,实现代码如下:
# Definition for a binary tree node.# class TreeNode:# def __init__(self, val=0, left=None, right=None):# self.val = val# self.left = left# self.right = rightclass Solution:def reverseTree(self, node: Optional[TreeNode]) -> None:if not node:returnif not node.left and not node.right:returnnode.left, node.right = node.right, node.leftself.reverseTree(node.left)self.reverseTree(node.right)def invertTree(self, root: Optional[TreeNode]) -> Optional[TreeNode]:if not root:return rootself.reverseTree(root)return root
附上规范写法,更简洁和有效,应该学习:
# Definition for a binary tree node.# class TreeNode:# def __init__(self, val=0, left=None, right=None):# self.val = val# self.left = left# self.right = rightclass Solution:def invertTree(self, root: TreeNode) -> TreeNode:if not root:return Noneroot.left, root.right = root.right, root.leftself.invertTree(root.left)self.invertTree(root.right)return root
以上是递归写法,自然还能用迭代的方法,个人更喜欢使用广度优先(层序遍历),非常好理解,思路就是层序遍历压入队列中,然后依次进行反转,代码实现如下:
# Definition for a binary tree node.# class TreeNode:# def __init__(self, val=0, left=None, right=None):# self.val = val# self.left = left# self.right = rightclass Solution:def invertTree(self, root: TreeNode) -> TreeNode:if not root:return rootqueue = deque([root])while(queue):for _ in range(len(queue)):cur = queue.popleft()if cur.left:queue.append(cur.left)if cur.right:queue.append(cur.right)cur.left, cur.right = cur.right, cur.leftreturn root
101. 对称二叉树
给定一个二叉树,检查它是否是镜像对称的。

思路:
第一反应还是层序遍历,只需要将包括None的每一层节点数组都压入数组中,如果将数组的每一层数组反序输出与原数组都相同,那么说明是对称的。
但还是以学习递归为主,先优先实现递归的方法,思路是在每一个递归过程中,判断【左孩子的左孩子】和【右孩子的右孩子】是否相等,以及判断【左孩子的右孩子】和【右孩子的左孩子】是否相等。代码随想录将其分别称为外侧和里侧,可能更好理解一点。除了以上还需要确保根节点的左右孩子相等才行。
递归三部曲:
- 参数和返回值:参数为两个,是左右孩子两个节点,即要进行比较的两个子树根节点。返回值应该是bool,当出现任意一个false都应该返回false。
- 终止条件:①左空右不空->false ②左不空右空->false ③左右为空->True ④左右不空但数值不等->false
- 递归逻辑:当左右不空且数值相等时(这里其实是⑤,所以上面④的时候不能用else,只能用else if或者elif),才进入递归逻辑:判断【左孩子的右孩子】和【右孩子的左孩子】是否相等,只有当两个条件都符合时返回True,否则返回false。
代码实现如下:
# Definition for a binary tree node.# class TreeNode:# def __init__(self, val=0, left=None, right=None):# self.val = val# self.left = left# self.right = rightclass Solution:def compare(self, node1: Optional[TreeNode], node2: Optional[TreeNode]) -> bool:if node1 and not node2:return Falseelif not node1 and node2:return Falseelif not node1 and not node2:return Trueelif node1.val != node2.val:return Falsebool1 = self.compare(node1.left, node2.right)bool2 = self.compare(node1.right, node2.left)return bool1 and bool2def isSymmetric(self, root: Optional[TreeNode]) -> bool:if not root:return Trueif not root.left and not root.right:return Truereturn self.compare(root.left, root.right)
规范代码:
class Solution:def isSymmetric(self, root: TreeNode) -> bool:if not root:return Truereturn self.compare(root.left, root.right)def compare(self, left, right):#首先排除空节点的情况if left == None and right != None: return Falseelif left != None and right == None: return Falseelif left == None and right == None: return True#排除了空节点,再排除数值不相同的情况elif left.val != right.val: return False#此时就是:左右节点都不为空,且数值相同的情况#此时才做递归,做下一层的判断outside = self.compare(left.left, right.right) #左子树:左、 右子树:右inside = self.compare(left.right, right.left) #左子树:右、 右子树:左isSame = outside and inside #左子树:中、 右子树:中 (逻辑处理)return isSame
层序遍历:
# Definition for a binary tree node.# class TreeNode:# def __init__(self, val=0, left=None, right=None):# self.val = val# self.left = left# self.right = rightclass Solution:def isSymmetric(self, root: Optional[TreeNode]) -> bool:if not root:return Trueres = []queue = deque([root])while queue:arr = []for _ in range(len(queue)):cur = queue.popleft()if not cur:arr.append(None)continuearr.append(cur.val)queue.append(cur.left)queue.append(cur.right)res.append(arr)for arr in res:if arr != arr[::-1]:return Falsereturn True
规范代码(层序遍历):
class Solution:def isSymmetric(self, root: TreeNode) -> bool:if not root:return Truequeue = collections.deque([root.left, root.right])while queue:level_size = len(queue)if level_size % 2 != 0:return Falselevel_vals = []for i in range(level_size):node = queue.popleft()if node:level_vals.append(node.val)queue.append(node.left)queue.append(node.right)else:level_vals.append(None)if level_vals != level_vals[::-1]:return Falsereturn True
104.二叉树的最大深度
给定一个二叉树,找出其最大深度。
二叉树的深度为根节点到最远叶子节点的最长路径上的节点数。
说明: 叶子节点是指没有子节点的节点。
示例: 给定二叉树 [3,9,20,null,null,15,7],

返回它的最大深度 3 。
思路:
依然第一反应是层序遍历:每到新一层就更新最大值,最后返回最大值即可。
还是以学习递归为主,递归思路:
节点的深度是孩子节点的深度+1,那么只需要递归计算孩子节点的深度然后+1即可。
递归三部曲:
- 参数和返回值:参数应该是传入一个节点。返回值是传入节点的两个孩子节点的深度的最大值,应该是int类型。
- 终止条件:当左右孩子都不存在的时候,说明是叶子节点,此时返回深度1。当本节点不存在的时候,这时候为了区别于叶子节点,返回深度0
- 递归逻辑:对两个左右孩子进行递归调用,得到两个数值中的最大值然后再+1就可以得到当前节点的深度。
代码实现如下:
# Definition for a binary tree node.# class TreeNode:# def __init__(self, val=0, left=None, right=None):# self.val = val# self.left = left# self.right = rightclass Solution:def getdepth(self, node: Optional[TreeNode]) -> int:if not node:return 0if not node.left and not node.right:return 1return max(self.getdepth(node.left), self.getdepth(node.right)) + 1def maxDepth(self, root: Optional[TreeNode]) -> int:if not root:return 0return self.getdepth(root)
层序遍历:
# Definition for a binary tree node.# class TreeNode:# def __init__(self, val=0, left=None, right=None):# self.val = val# self.left = left# self.right = rightclass Solution:def maxDepth(self, root: Optional[TreeNode]) -> int:if not root:return 0queue = deque([root])res = 0while queue:for _ in range(len(queue)):cur = queue.popleft() if cur.left:queue.append(cur.left)if cur.right:queue.append(cur.right)res += 1return res
111.二叉树的最小深度
给定一个二叉树,找出其最小深度。
最小深度是从根节点到最近叶子节点的最短路径上的节点数量。
说明: 叶子节点是指没有子节点的节点。
示例:
给定二叉树 [3,9,20,null,null,15,7],

返回它的最小深度 2.
思路:
层序遍历思路:每层遍历记录层数,当第一次遍历到叶子节点的时候直接返回深度即可。
递归思路:与前面计算最大深度相似,但是需要注意的是,有一种情况不一样,也就是只有一个孩子的情况,因为没有孩子的情况有可能会返回0,但此时本节点并非叶子节点,此时如果空节点返回了深度0,那么此时计算到的最小深度是错误的。所以该题应该在遇到空孩子的时候直接跳过。
递归三部曲:
- 参数和返回值:参数是进入递归调用的节点。返回值应该是int类型的深度值。
- 终止条件:当左右孩子都不存在时(为叶子节点),返回深度1
- 递归逻辑:当左右孩子均存在时,计算两个孩子节点的深度的最小值,得到后+1作为返回值。如果只存在一个孩子,则计算存在的孩子节点的深度,然后+1作为返回值。、
代码实现如下:
# Definition for a binary tree node.# class TreeNode:# def __init__(self, val=0, left=None, right=None):# self.val = val# self.left = left# self.right = rightclass Solution:def minDepth(self, root: Optional[TreeNode]) -> int:return self.getdepth(root)def getdepth(self, node: Optional[TreeNode]) -> int:if not node:return 0if not node.left and not node.right:return 1if node.left and node.right:return min(self.getdepth(node.left), self.getdepth(node.right)) + 1elif not node.left and node.right:return self.getdepth(node.right) + 1elif node.left and not node.right:return self.getdepth(node.left) + 1
规范代码:
class Solution:def getDepth(self, node):if node is None:return 0leftDepth = self.getDepth(node.left) # 左rightDepth = self.getDepth(node.right) # 右# 当一个左子树为空,右不为空,这时并不是最低点if node.left is None and node.right is not None:return 1 + rightDepth# 当一个右子树为空,左不为空,这时并不是最低点if node.left is not None and node.right is None:return 1 + leftDepthresult = 1 + min(leftDepth, rightDepth)return resultdef minDepth(self, root):return self.getDepth(root)
层序遍历:
# Definition for a binary tree node.# class TreeNode:# def __init__(self, val=0, left=None, right=None):# self.val = val# self.left = left# self.right = rightclass Solution:def minDepth(self, root: Optional[TreeNode]) -> int:if not root:return 0queue = deque([root])res = 0while queue:for _ in range(len(queue)):cur = queue.popleft() if cur.left:queue.append(cur.left)if cur.right:queue.append(cur.right)if not cur.left and not cur.right:return res+1res += 1return res
相关文章:
代码随想录算法训练营第十四天|递归 226.翻转二叉树 101. 对称二叉树 104.二叉树的最大深度 111.二叉树的最小深度
226.翻转二叉树 翻转一棵二叉树。 思路: 在这里需要注意的是,在递归的时候唯独中序遍历是不可用的,这是因为先对左子树进行了反转,又对自身进行了反转,对自身反转后原本的左子树变成了右子树,如果此时又轮…...
Spark 任务与 Spark Streaming 任务的差异详解
Spark 任务与 Spark Streaming 任务的主要差异源自于两者的应用场景不同:Spark 主要处理静态的大数据集,而 Spark Streaming 处理的是实时流数据。这些差异体现在任务的调度、执行、容错、数据处理模式等方面。 接下来,我们将从底层原理和源…...
Git提示信息 Pulling is not possible because you have unmerged files.
git [fatal] hint: Pulling is not possible because you have unmerged files.hint: Fix them up in the … error: Pulling is not possible because you have unmerged files. 错误:无法提取,因为您有未合并的文件。 hint: Fix them up in the work tree, and t…...
python编程开发“人机猜拳”游戏
👨💻个人主页:开发者-曼亿点 👨💻 hallo 欢迎 点赞👍 收藏⭐ 留言📝 加关注✅! 👨💻 本文由 曼亿点 原创 👨💻 收录于专栏:…...
丹摩智算平台部署 Llama 3.1:实践与体验
文章目录 前言部署前的准备创建实例 部署与配置 Llama 3.1使用心得总结 前言 在最近的开发工作中,我有机会体验了丹摩智算平台,部署并使用了 Llama 3.1 模型。在人工智能和大模型领域,Meta 推出的 Llama 3.1 已经成为了目前最受瞩目的开源模…...
SpringCloud 2023各依赖版本选择、核心功能与组件、创建项目(注意事项、依赖)
目录 1. 各依赖版本选择2. 核心功能与组件3. 创建项目3.1 注意事项3.2 依赖 1. 各依赖版本选择 SpringCloud: 2023.0.1SpringBoot: 3.2.4。参考Spring Cloud Train Reference Documentation选择版本 SpringCloud Alibaba: 2023.0.1.0*: 参考Spring Cloud Alibaba选择版本。同时…...
串行化执行、并行化执行
文章目录 1、串行化执行2、并行化测试(多线程环境)3、任务的执行是异步的,但主程序的继续执行是同步的 可以将多个任务编排为并行和串行化执行。 也可以处理编排的多个任务的异常,也可以返回兜底数据。 1、串行化执行 顺序执行、…...
二叉搜索树(c++版)
前言 在前面我们介绍过二叉树这个数据结构,今天我们更进一步来介绍二叉树的一种在实现中运用的场景——二叉搜索树。二叉搜索树顾名思义其在“搜索”这个场景下有不俗的表现,之所以会这样是因为它在二叉树的基础上添加了一些属性。下面我们就来简单的介…...
每日1题-7
...
简单实现log记录保存到文本和数据库
简单保存记录到txt,sqlite数据库,以及console监控记录 using System; using System.Collections.Generic; using System.ComponentModel; using System.Text; using System.Data.SQLite; using System.IO;namespace NlogFrame {public enum LogType{Tr…...
敏感字段加密 - 华为OD统一考试(E卷)
2024华为OD机试(E卷+D卷+C卷)最新题库【超值优惠】Java/Python/C++合集 题目描述 【敏感字段加密】给定一个由多个命令字组成的命令字符串: 1、字符串长度小于等于127字节,只包含大小写字母,数字,下划线和偶数个双引号; 2、命令字之间以一个或多个下划线 进行分割; 3、可…...
go 安装三方库
go版本 go versiongo version go1.23.1 darwin/arm64安装 redis 库 cd $GOPATH说明: 这里可以改 GOPATH的值 将如下 export 语句写入 ~/.bash_profile 文件中 export GOPATH/Users/goproject然后使其生效 source ~/.bash_profile初始化生成 go.mod 文件 go mod…...
Java 中的 volatile和synchronized和 ReentrantLock区别讲解和案例示范
在 Java 的并发编程中,volatile、synchronized 和 ReentrantLock 是三种常用的同步机制。每种机制都有其独特的特性、优缺点和适用场景。理解它们之间的区别以及在何种情况下使用哪种机制,对提高程序的性能和可靠性至关重要。本文将详细探讨这三种机制的…...
从GDAL中 读取遥感影像的信息
从GDAL提供的实用程序来看,很多程序的后缀都是 .py ,这充分地说明了Python语言在GDAL的开发中得到了广泛的应用。 1. 打开已有的GeoTIF文件 下面我们试着读取一个GeoTiff文件的信息。第一步就是打开一个数据集。 >>> from osgeo import gdal…...
算法闭关修炼百题计划(一)
多看优秀的代码一定没有错,此篇博客属于个人学习记录 1.两数之和2.前k个高频元素3.只出现一次的数字4.数组的度5.最佳观光组合6.整数反转7.缺失的第一个正数8.字符串中最多数目的子序列9.k个一组翻转链表10.反转链表II11. 公司命名12.合并区间13.快速排序14.数字中的…...
vue3实现打字机的效果,可以换行
之前看了很多文章,效果是实现了,就是没有自动换行的效果,参考了文章写了一个,先上个效果图,卡顿是因为模仿了卡顿的效果,还是很丝滑的 目录 效果图:代码如下 效果图: 函数查找原因是FLASH Programming Sequence error(编程顺序错误),解决办法是在解锁后清零标志位…...
Android—ANR日志分析
获取ANR日志: ANR路径:/data/anrADB指令:adb bugreport D:\bugrep.zip ANR日志分析步骤: “main” prio:主线程状态beginning of crash:搜索 crash 相关信息CPU usage from:搜索 cpu 使用信息…...
9.29 LeetCode 3304、3300、3301
思路: ⭐进行无限次操作,但是 k 的取值小于 500 ,所以当 word 的长度大于 500 时就可以停止操作进行取值了 如果字符为 ‘z’ ,单独处理使其变为 ‘a’ 得到得到操作后的新字符串,和原字符串拼接 class Solution { …...
MPNet:旋转机械轻量化故障诊断模型详解python代码复现
目录 一、问题背景与挑战 二、MPNet核心架构 2.1 多分支特征融合模块(MBFM) 2.2 残差注意力金字塔模块(RAPM) 2.2.1 空间金字塔注意力(SPA) 2.2.2 金字塔残差块(PRBlock) 2.3 分类器设计 三、关键技术突破 3.1 多尺度特征融合 3.2 轻量化设计策略 3.3 抗噪声…...
在软件开发中正确使用MySQL日期时间类型的深度解析
在日常软件开发场景中,时间信息的存储是底层且核心的需求。从金融交易的精确记账时间、用户操作的行为日志,到供应链系统的物流节点时间戳,时间数据的准确性直接决定业务逻辑的可靠性。MySQL作为主流关系型数据库,其日期时间类型的…...
云计算——弹性云计算器(ECS)
弹性云服务器:ECS 概述 云计算重构了ICT系统,云计算平台厂商推出使得厂家能够主要关注应用管理而非平台管理的云平台,包含如下主要概念。 ECS(Elastic Cloud Server):即弹性云服务器,是云计算…...
全志A40i android7.1 调试信息打印串口由uart0改为uart3
一,概述 1. 目的 将调试信息打印串口由uart0改为uart3。 2. 版本信息 Uboot版本:2014.07; Kernel版本:Linux-3.10; 二,Uboot 1. sys_config.fex改动 使能uart3(TX:PH00 RX:PH01),并让boo…...
Typeerror: cannot read properties of undefined (reading ‘XXX‘)
最近需要在离线机器上运行软件,所以得把软件用docker打包起来,大部分功能都没问题,出了一个奇怪的事情。同样的代码,在本机上用vscode可以运行起来,但是打包之后在docker里出现了问题。使用的是dialog组件,…...
论文笔记——相干体技术在裂缝预测中的应用研究
目录 相关地震知识补充地震数据的认识地震几何属性 相干体算法定义基本原理第一代相干体技术:基于互相关的相干体技术(Correlation)第二代相干体技术:基于相似的相干体技术(Semblance)基于多道相似的相干体…...
Docker 本地安装 mysql 数据库
Docker: Accelerated Container Application Development 下载对应操作系统版本的 docker ;并安装。 基础操作不再赘述。 打开 macOS 终端,开始 docker 安装mysql之旅 第一步 docker search mysql 》〉docker search mysql NAME DE…...
JavaScript基础-API 和 Web API
在学习JavaScript的过程中,理解API(应用程序接口)和Web API的概念及其应用是非常重要的。这些工具极大地扩展了JavaScript的功能,使得开发者能够创建出功能丰富、交互性强的Web应用程序。本文将深入探讨JavaScript中的API与Web AP…...
AirSim/Cosys-AirSim 游戏开发(四)外部固定位置监控相机
这个博客介绍了如何通过 settings.json 文件添加一个无人机外的 固定位置监控相机,因为在使用过程中发现 Airsim 对外部监控相机的描述模糊,而 Cosys-Airsim 在官方文档中没有提供外部监控相机设置,最后在源码示例中找到了,所以感…...
Linux系统部署KES
1、安装准备 1.版本说明V008R006C009B0014 V008:是version产品的大版本。 R006:是release产品特性版本。 C009:是通用版 B0014:是build开发过程中的构建版本2.硬件要求 #安全版和企业版 内存:1GB 以上 硬盘…...
