当前位置: 首页 > news >正文

04 B-树

目录

  1. 常见的搜索结构
  2. B-树概念
  3. B-树的插入分析
  4. B-树的插入实现
  5. B+树和B*树
  6. B-树的应用

1. 常见的搜索结构

种类数据格式时间复杂度
顺序查找无要求O(N)
二分查找有序O( l o g 2 N log_2N log2N)
二分搜索树无要求O(N)
二叉平衡树无要求O( l o g 2 N log_2N log2N)
哈希无要求O(1)

以上结构适合用于数据量相对不是很大,能够一次性存放在内存中,进行数据查找的场景。如果数据量很大,比如有100G数据,无法一次放进内存中,那就只能放在磁盘上了,如果放在磁盘上,有需要搜索某些数据,那么如果处理呢?那么我们可以考虑将存放关键字及其映射的数据的地址放到一个内存中的搜索树的节点中,那么要访问数据时,先取这个地址去磁盘访问数据。

在这里插入图片描述
在这里插入图片描述

使用平衡二叉搜索树的缺陷:
平衡二叉搜索树的高度是logN,这个查找次数在内存中时最快的。但是当数据都在磁盘中时,访问磁盘速度很慢,在数据量很大时,logN次的磁盘访问,是一个难以接受的结果

使用哈希表的缺陷:
哈希表的效率很高是O(1),但是一些极端场景下某个位置冲突很多,导致访问次数剧增

那如何加速对数据的访问?
1.提高IO的速度(SSD相比传统机械硬盘快了不少,但是还没有得到本质性的提升)
2.降低树的高度–多叉平衡树

2. B树概念

1970年,R.Bayer和E.mccreight提出了一种适合外查找的树,它是一种平衡的多叉树,称为B树(后面有一个B的改进版本B+树,然后有些地方的B树写的的是B-树,注意不要误读成"B减树")。一棵m阶(m>2)的B树,是一棵平衡的M路平衡搜索树,可以是空树或者满足一下性质:

1.根节点至少有两个孩子
2.每个分支节点都包含k-1个关键字和k个孩子,其中ceil(m/2) <= k <= m,ceil则是向上取整函数
3.每个叶子结点都包含k-1个关键字,其中ceil(m/2) ≤ k ≤ m
4.所有的叶子节点都在同一层
5.每个节点中的关键字从小到大排列,节点当中k-1个元素正好是k个孩子包含的元素的值域划分
6.每个节点的结构为:{n,A0,K1,A1,K2,A2.。。,Kn,An}其中,K(1≤i≤n)位关键字,且Ki < Ki+1 (1≤i≤n)为指向子树根节点的指针。且Ai所指子树所有节点中的关键字均小于Ki+1
n为节点中关键字的个数,满足ceil(m/2)-1≤n≤m-1

3. B-树的插入分析

为了简单起见,假设M=3,即三叉树,每个节点中存储两个数据,两个数据可以将区间分割成三个部分,因此节点应该有3个孩子,节点结构如下:
在这里插入图片描述
注意:孩子永远比数据多一个
用序列{53,139,75,49,145,36,101}构建B树的过程如下:
在这里插入图片描述在这里插入图片描述在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3.1 结构设计

b树的节点,用n记录已经保存的数据数量,用数组保存关键字,孩子数量比关键字多一个,再用一个指针保存当前节点的父亲,方便插入

template <class K, size_t M>
struct BTreeNode
{size_t _n;  // 记录存储多少个关键字K _keys[M]; struct BTreeNode<K, M>* _subs[M + 1];  // 孩子struct BTreeNode<K, M>* _parent;  // 父亲BTreeNode(){for (size_t i = 0; i < M; i++){_keys[i] = K();_subs[i] = nullptr;}_n = 0;_subs[M] = nullptr;_parent = nullptr;}
};

B树保存一个根节点

template <class K, size_t M>
class BTree
{typedef struct BTreeNode<K, M> node;private:node* _root = nullptr;
};

3.2 查找

要实现插入,先提供一个查找关键字存不存在的功能
两个循环,内部循环用来在一个节点中查找,如果key比当前值大,key就++,如果小,就跳到它的左子树。找到返回地址和下标,找不到返回它的父节点方便插入

// 返回指针和节点中的位置
std::pair<node*, int> Find(const K& key)
{node* parent = nullptr;node* cur = _root;while (cur){// 一个节点中查找size_t i = 0;while (i < cur->_n){if (key > cur->_keys[i]){i++;}else if (key < cur->_keys[i]){break;}else{return std::make_pair(cur, i);}}parent = cur;// 往孩子跳cur = cur->_subs[i];}return std::make_pair(parent, -1);
}

在这里插入图片描述在这里插入图片描述在这里插入图片描述

插入过程总结:

1.如果树为空,直接插入新节点,该结点为树的根节点
2.树非空,找待插入元素在树中的插入位置(注意:找到的插入节点位置一定在叶子节点中)
3.检测是否找到插入位置(假设树中的key唯一,即该元素已经存在不插入)
4.按照插入排序的思想将该元素插入到找到的节点中
5.检测该结点是否满足B-树的性质:即该节点中的元素个数是否等于M,如果小于则满足
6.如果插入后节点不满足B树的性质,需要对该节点分裂

  • 申请新及诶点
  • 找到该节点的中间位置
  • 将该节点的中间位置右侧的元素以及孩子搬移到新节点中
  • 将中间位置元素以及新节点往该节点中的双亲节点中插入,即继续

7.如果向上已经分裂到根节点的位置,插入结束

4. B树的插入实现

分为两个部分,一个函数用来找到插入位置插入,一个函数进行后续的调整,分裂保证B树特征

4.1 插入数据

插入的时候走的是插入的逻辑,挪动数据的同时要挪动孩子,插入成功还要连接父亲

// 找到节点中的插入位置插入数据
void InsertKey(node* cur, const K& key, node* child)
{int end = cur->_n - 1;while (end >= 0){if (key < cur->_keys[end]){// 挪动key和它的右孩子cur->_keys[end + 1] = cur->_keys[end];cur->_subs[end + 2] = cur->_subs[end + 1];end--;}else{break;}}cur->_keys[end + 1] = key;cur->_subs[end + 2] = child;// 第一次可能为空if (child){child->_parent = cur;}cur->_n++;
}

4.2 调整

需要注意清空原数据和孩子和父亲的连接

// 插入的分裂等补充
bool Insert(const K& key)
{if (_root == nullptr){node* new_node = new node;new_node->_keys[0] = key;_root = new_node;_root->_n++;return true;}// key已经存在,不允许插入std::pair<node*, int> ret = Find(key);node* parent = ret.first;if (ret.second >= 0){return false;}// 如果没有找到,find顺便带回了要插入的叶子节点// 循环每次往cur插入,newkey和childK new_key = key;node* child = nullptr;while (1){InsertKey(parent, new_key, child);// 没满结束if (parent->_n < M){return true;}// 满了分裂node* brother = new node;size_t j = 0;// 分裂一半[mid + 1, M - 1]给兄弟size_t mid = M / 2;size_t i = mid + 1;// 拷贝key,还要拷贝孩子for (; i < M; i++){brother->_keys[j] = parent->_keys[i];brother->_subs[j] = parent->_subs[i];// 孩子不为空,更新父亲if (parent->_subs[i]){parent->_subs[i]->_parent = brother;}j++;parent->_keys[i] = K();parent->_subs[i] = nullptr;}// 还有最后一个右孩子brother->_subs[j] = parent->_subs[i];if (parent->_subs[i]){parent->_subs[i]->_parent = brother;}parent->_subs[i] = nullptr;brother->_n = j;parent->_n -= brother->_n + 1;K mid_key = parent->_keys[mid];parent->_keys[mid] = K();// 说明刚刚分裂的是头节点if (parent->_parent == nullptr){_root = new node;_root->_keys[0] = mid_key;_root->_subs[0] = parent;_root->_subs[1] = brother;_root->_n = 1;parent->_parent = _root;brother->_parent = _root;return true;}else{// 转换成往parent->parent 去插入parent->[mid] 和 brothernew_key = mid_key;child = brother;parent = parent->_parent;}}
}

4.3 B-树的简单验证

对B树中序遍历,如果得到一个有序的序列,说明插入正确。和搜索二叉树类似,先左,再根,再往右移动

void _Inorder(node* cur)
{if (cur == nullptr){return;}// 左 根 左 根 。。。 右size_t i = 0;for (; i < cur->_n; i++){_Inorder(cur->_subs[i]);  // 左子树std::cout << cur->_keys[i] << " ";  // 根}// 最后的那个右子树_Inorder(cur->_subs[i]);
}void Inorder()
{_Inorder(_root);
}

4.5 B-树的性能分析

对于一棵节点为N,度为M的B-树,查找和插入需要 l o g ( M − 1 ) N log(M-1)N log(M1)N~ l o g ( M / 2 ) N log(M/2)N log(M/2)N次比较:对于度为M的B-树,每一个节点的子节点个数为M/2 ~ M-1之间,因此树的高度应该在 l o g ( M − 1 ) N log(M-1)N log(M1)N l o g ( M / 2 ) N log(M/2)N log(M/2)N之间,在定位到该结点后,再采用二分查找的方式可以很快的定位到该元素

B-树的效率是很高的,对于N=62*1000000000个节点,如果度M为1024,则 l o g M / 2 N log_{M/2}N logM/2N <= 4,即在620亿个元素中,如果这棵树的度为1024,则需要小于4次即可定位到该结点,然后利用二分查找可以快速定位到该元素,大大减少了读取磁盘的次数

4.6 B-树的删除

学习B树的插入足够帮助理解B树的特性,删除可以参考《算法导论》和《数据局结构-殷人昆》-C++

5. B+树和B*树

B+树是B树的变形,在B树基础上优化的多路平衡搜索树,B+树的规则跟B树基本类似,但是又在B树的基础上做了以下几点改进优化:

1.分支节点的子树指针与关键字个数相同(相当于取消了最左的子树)
2.分支节点的子树指针p[i]指向关键字值大小在[k[i],k[i+1]]区间之间
3.所有叶子节点增加一个连接指针连接在一起
4.所有关键字及其映射数据都在叶子节点出现

在这里插入图片描述
B树的特性:
1.所有关键字都出现在叶子结点的链表中,且链表中的节点都是有序的
2.不可能在分支节点命中
3.分支节点相当于是叶子节点的索引,叶子节点才是存储数据的

5.2 B+树

B*树是B+树的变形,在B+树中的非跟和非叶子点再增加指向兄弟节点的指针
在这里插入图片描述
B+树的分裂
当一个节点满时,分配一个新的节点,并将原节点中1/2的数据复制到新节点,最后在父节点中增加新及诶点的指针,B+树的分裂只影响原节点和父节点,而不会影响兄弟节点,所以它不需要指向兄弟的指针

B*树的分类
当一个结点满时,如果它的下一个兄弟结点未满,那么将一部分数据移到兄弟结点中,再在原结点插入关键字,最后修改父结点中兄弟结点的关键字(因为兄弟结点的关键字范围改变了);如果兄弟也满了,则在原结点与兄弟结点之间增加新结点,并各复制1/3的数据到新结点,最后在父结点增加新结点的指针。所以,B*树分配新结点的概率比B+树要低,空间使用率更高;

5.3 总结

B树:有序数组+平衡多茶树
B+树:有序数组链表+平衡多叉树
B*树:一颗丰满的,空间利用率更高的B+树

内存查找B树没有优势:
1.空间利用率低。消耗高
2.插入删除数据时,分裂和合并节点,必然挪动数据
3.虽然高度更低,但是在内存而言,和哈希和平衡搜索树还是一个量级

6. B树的应用

6.1 索引

B-树最常见的应用就是用来做索引。索引通俗的说就是为了方便用户快速找到所寻之物,比如:书籍目录可以让读者快速找到相关信息,hao123网页导航网站,为了让用户能够快速的找到有价值的分类网站,本质上就是互联网页面中的索引结构。

MySQL官方对索引的定义为:索引(index)是帮助MySQL高效获取数据的数据结构,简单来说:索引就是数据结构

当数据量很大时,为了能够方便管理数据,提高数据查询的效率,一般都会选择将数据保存到数据库,因此数据库不仅仅是帮助用户管理数据,而且数据库系统还维护着满足特定查找算法的数据结构,这些数据结构以某种方式引用数据,这样就可以在这些数据结构上实现高级查找算法,该数据结构就是索引。

6.2 MySQL索引简介

mysql是目前非常流行的开源关系型数据库,不仅是免费的,可靠性高,速度也比较快,而且拥有灵活的插件式存储引擎

在这里插入图片描述
索引属于存储引擎级别的概念,不同存储引擎对索引的实现方式不同
注意:索引是基于表的,而不是基于数据库的

6.2.1 MyISAM

MyISAM引擎是MySQL5.5.8版本之前默认的存储引擎,不支持事物,支持全文检索,使用B+Tree作为索引结构,叶节点的data域存放的是数据记录的地址,其结构如下:
在这里插入图片描述

上图是以以Col1为主键,MyISAM的示意图,可以看出MyISAM的索引文件仅仅保存数据记录的地址。在MyISAM中,主索引和辅助索引(Secondary key)在结构上没有任何区别,只是主索引要求key是唯一的,而辅助索引的key可以重复。如果想在Col2上建立一个辅助索引,则此索引的结构如下图所示:

在这里插入图片描述
同样也是一棵B+Tree,data域保存数据记录的地址。因此,MyISAM中索引检索的算法为首先按照B+Tree搜索算法搜索索引,如果指定的Key存在,则取出其data域的值,然后以data域的值为地址,读取相应数据记录。MyISAM的索引方式也叫做“非聚集索引”的。

6.2.2 InnoDB

InnoDB存储引擎支持事务,其设计目标主要面向在线事务处理的应用,从MySQL数据库5.5.8版本开始,InnoDB存储引擎是默认的存储引擎。InnoDB支持B+树索引、全文索引、哈希索引。但InnoDB使用B+Tree作为索引结构时,具体实现方式却与MyISAM截然不同。第一个区别是InnoDB的数据文件本身就是索引文件。MyISAM索引文件和数据文件是分离的,索引文件仅保存数据记录的地址。而InnoDB索引,表数据文件本身就是按B+Tree组织的一个索引结构,这棵树的叶节点data域保存了完整的数据记录。这个索引的key是数据表的主键,因此InnoDB表数据文件本身就是主索引。

在这里插入图片描述

上图是InnoDB主索引(同时也是数据文件)的示意图,可以看到叶节点包含了完整的数据记录,这种索引叫做聚集索引。因为InnoDB的数据文件本身要按主键聚集,所以InnoDB要求表必须有主键(MyISAM可以没有),如果没有显式指定,则MySQL系统会自动选择一个可以唯一标识数据记录的列作为主键,如果不存在这种列,则MySQL自动为InnoDB表生成一个隐含字段作为主键,这个字段长度为6个字节,类型为长整型。

第二个区别是InnoDB的辅助索引data域存储相应记录主键的值而不是地址,所有辅助索引都引用主键作为data域。
在这里插入图片描述
聚簇索引这种实现方式使得主键的搜索十分高效,但是辅助索引需要检索两变索引:首先检索辅助索引获得主键,然后用主键到主索引中检索获得记录,如用id和名字分别查找

B+树主键索引相比B树的优势
1.B+树所有值都在叶子,遍历很方便,方便区间查找
2.对于没有建立索引的字段,全表扫描的遍历也很方便
3.分支节点值存储key,一个分支节点空间占用更小,可以尽可能加载到内存

B树不用叶子就能找到值,B+树一定要到叶子。这是B树的优势,但是B+树高度足够低,所以差别不大

参考资料:
http://blog.codinglabs.org/articles/theory-of-mysql-index.html

相关文章:

04 B-树

目录 常见的搜索结构B-树概念B-树的插入分析B-树的插入实现B树和B*树B-树的应用 1. 常见的搜索结构 种类数据格式时间复杂度顺序查找无要求O(N)二分查找有序O( l o g 2 N log_2N log2​N)二分搜索树无要求O(N)二叉平衡树无要求O( l o g 2 N log_2N log2​N)哈希无要求O(1) 以…...

计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-09-27

计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-09-27 目录 文章目录 计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-09-27目录1. VisScience: An Extensive Benchmark for Evaluating K12 Educational Multi-modal Scientific Reasoning VisScience:…...

恋爱辅助应用小程序app开发之广告策略

恋爱话术小程序带流量主广告开启&#xff0c;是一个有效的盈利模式&#xff0c;可以增加小程序的收入来源。以下是对此的详细分析 一、流量主广告的定义与优势 流量主广告是指在小程序中嵌入广告位&#xff0c;通过展示广告内容来获取广告主的付费。对于恋爱话术小程序而言&am…...

iTextPDF中,要实现表格中的内容在数据长度超过边框时自动换行

在iTextPDF中&#xff0c;要实现表格中的内容在数据长度超过边框时自动换行&#xff0c;你可以使用Phrase对象并设置其HyphenationEvent&#xff0c;或者使用Chunk对象并设置其setSplitCharacter方法。以下是一些方法来实现这一功能&#xff1a; 1. 使用Phrase对象&#xff1a…...

Unreal Engine 5 C++: 插件编写03 | MessageDialog

在虚幻引擎编辑器中编写Warning弹窗 准备工作 FMessageDialog These functions open a message dialog and display the specified informations there. EAppReturnType::Type 是 Unreal Engine 中用于表示应用程序对话框&#xff08;如消息对话框&#xff09;返回结果的枚举…...

【前端面试题】Vue 3 生命周期钩子的执行顺序详解

前言 在 Vue 3 中&#xff0c;生命周期钩子的执行顺序与 Vue 2 有所不同&#xff0c;特别是 setup 函数取代了传统的生命周期钩子 beforeCreate 和 created。本文将详细解析 Vue 3 的生命周期钩子执行顺序&#xff0c;帮助你更好地理解 Vue 3 的组件生命周期及其工作机制。 V…...

Apache DolphinScheduler-1.3.9源码分析(一)

引言 随着大数据的发展&#xff0c;任务调度系统成为了数据处理和管理中至关重要的部分。Apache DolphinScheduler 是一款优秀的开源分布式工作流调度平台&#xff0c;在大数据场景中得到广泛应用。 在本文中&#xff0c;我们将对 Apache DolphinScheduler 1.3.9 版本的源码进…...

高级java每日一道面试题-2024年9月29日-数据库篇-索引怎么定义,分哪几种?

如果有遗漏,评论区告诉我进行补充 面试官: 索引怎么定义,分哪几种? 我回答: 在Java高级面试中&#xff0c;尤其是涉及数据库和数据结构的部分&#xff0c;索引&#xff08;Index&#xff09;是一个核心概念。索引的目的是提高数据库表中数据的检索速度&#xff0c;从而加快…...

现代LLM基本技术整理

0 开始之前 作者&#xff1a;hadiii&#xff0c;北京大学 电子信息硕士在读 本文从Llama 3报告出发&#xff0c;基本整理一些现代LLM的技术。基本&#xff0c;是说对一些具体细节不会过于详尽&#xff0c;而是希望得到一篇相对全面&#xff0c;包括预训练&#xff0c;后训练&…...

EasyX与少儿编程:轻松上手的编程启蒙工具

EasyX&#xff1a;开启少儿编程的图形化启蒙之路 随着科技发展&#xff0c;编程逐渐成为孩子们教育中重要的一部分。如何让孩子在编程启蒙阶段更容易接受并激发他们的兴趣&#xff0c;成为许多家长和老师关心的问题。相比起传统的编程语言&#xff0c;图形化编程工具显得更直观…...

【C语言指南】数据类型详解(上)——内置类型

&#x1f493; 博客主页&#xff1a;倔强的石头的CSDN主页 &#x1f4dd;Gitee主页&#xff1a;倔强的石头的gitee主页 ⏩ 文章专栏&#xff1a;《C语言指南》 期待您的关注 目录 引言 1. 整型&#xff08;Integer Types&#xff09; 2. 浮点型&#xff08;Floating-Point …...

视频汇聚/视频存储/安防视频监控EasyCVR平台RTMP推流显示离线是什么原因?

视频汇聚/视频存储/安防视频监控EasyCVR视频汇聚平台兼容性强、支持灵活拓展&#xff0c;平台可提供视频远程监控、录像、存储与回放、视频转码、视频快照、告警、云台控制、语音对讲、平台级联等视频能力。 EasyCVR安防监控视频综合管理平台采用先进的网络传输技术&#xff0…...

联想电脑怎么开启vt_联想电脑开启vt虚拟化教程(附intel和amd主板开启方法)

最近使用联想电脑的小伙伴们问我&#xff0c;联想电脑怎么开启vt虚拟。大多数可以在Bios中开启vt虚拟化技术&#xff0c;当CPU支持VT-x虚拟化技术&#xff0c;有些电脑会自动开启VT-x虚拟化技术功能。而大部分的电脑则需要在Bios Setup界面中&#xff0c;手动进行设置&#xff…...

手把手教你使用YOLOv11训练自己数据集(含环境搭建 、数据集查找、模型训练)

一、前言 本文内含YOLOv11网络结构图 训练教程 推理教程 数据集获取等有关YOLOv11的内容&#xff01; 官方代码地址&#xff1a;https://github.com/ultralytics/ultralytics/tree/main/ultralytics/cfg/models/11 二、整体网络结构图 三、环境搭建 项目环境如下&#xf…...

LabVIEW界面输入值设为默认值

在LabVIEW中&#xff0c;将前面板上所有控件的当前输入值设为默认值&#xff0c;可以通过以下步骤实现&#xff1a; 使用控件属性节点&#xff1a;你可以创建一个属性节点来获取所有控件的引用。 右键点击控件&#xff0c;选择“创建” > “属性节点”。 设置属性节点为“D…...

【Android 14源码分析】Activity启动流程-1

忽然有一天&#xff0c;我想要做一件事&#xff1a;去代码中去验证那些曾经被“灌输”的理论。                                                                                  – 服装…...

Java 中 synchronized 和 Thread 的使用场合介绍

在 Java 编程中&#xff0c;synchronized 和 Thread 是处理并发与多线程编程的关键工具。多线程编程是为了在单一程序中并行执行多个任务&#xff0c;Java 提供了丰富的 API 和关键字以实现这一目标&#xff0c;而其中 synchronized 和 Thread 是非常基础和重要的部分。 synch…...

爬虫库是什么?是ip吗

爬虫库通常指的是用于网页爬虫&#xff08;Web Scraping&#xff09;开发的代码库或框架&#xff0c;它不是IP地址。以下是关于爬虫库的详细解释&#xff1a; 爬虫库的定义 爬虫库是一些用于简化网络数据抓取过程的工具和框架&#xff0c;通常提供了一系列函数和类&#xff0…...

【MySQL】查询原理 —— B+树查询数据全过程

使用B树作为索引结构的原因&#xff1a; 一种自平衡树&#xff1a; B树在插入和删除的时候节点会进行分裂和合并操作&#xff0c;以保持树的平衡&#xff0c;存在冗余节点&#xff0c;使得删除的时候树结构变化小&#xff0c;更高效。 高度不会增长过快&#xff0c;查询磁盘I…...

系统设置 WIFI输入框被挡住解决方案

文章目录 问题点复现的场景机器横屏可复现&#xff0c;竖屏不存在跟density 相关的。 解决问题方案设置输入模式路径 部分源码跟踪方法 延伸思考设置输入模式设置主题 问题点 进入系统设置-网络和互联网-WLAN-点击WIFI item ,密码输入框被遮挡&#xff0c;输入的密码不可见.如…...

SpringCloud无法注册Nacos和配置中心

今天升级SpringCloud版本&#xff0c;导致服务无法注册到nacos&#xff0c;使用nacos作为配置中心也无法刷新配置信息&#xff0c;后来发现是因为只更新了SpringCloud版本&#xff0c;SpringCloud-Alibaba没有更新导致的问题。 升级出现问题的版本是&#xff1a; <dependen…...

word2vector训练数据集整理(代码实现)

import math import os import random import torch import dltools from matplotlib import pyplot as plt #读取数据集 def read_ptb():"""将PTB数据集加载到文本行的列表中"""with open(./ptb/ptb.train.txt) as f:raw_text f.read()return…...

无心上班,只想为祖国庆生?让ChatGPT帮你搞定工作!

国庆假期临近&#xff0c;大家的心早已飞向诗和远方了吧。 然而&#xff0c;现实总是无情地将我们拉回到堆积如山的工作任务上&#xff1a;紧急报告的截止日期就在眼前&#xff0c;复杂的项目策划还未动笔&#xff0c;客户的定制需求迫在眉睫。每年的这个时候&#xff0c;如何…...

【Python】YOLO牛刀小试:快速实现视频物体检测

YOLO牛刀小试&#xff1a;快速实现视频物体检测 在深度学习的众多应用中&#xff0c;物体检测是一个热门且重要的领域。YOLO&#xff08;You Only Look Once&#xff09;系列模型以其快速和高效的特点&#xff0c;成为了物体检测的首选之一。本文将介绍如何使用YOLOv8模型进行…...

Vscode超好看的渐变主题插件

样式效果&#xff1a; 插件使用方法&#xff1a; 然后重启&#xff0c;之后会显示vccode损坏&#xff0c;不用理会&#xff0c;因为这个插件是更改了应用内部代码&#xff0c;直接不再显示即可。...

OceanBase技术解析:自适应分布式下压技术

在《OceanBase 数据库源码解析》这本书中&#xff0c;关于SQL执行器的深入剖析相对较少&#xff0c;因此&#xff0c;希望增添一些实用且详尽的补充内容。 上一篇博客《 OceanBase技术解析&#xff1a; 执行器中的自适应技术》中&#xff0c;已初步介绍了执行器中几项典型的自适…...

Firebase和JavaScript创建Postback Link逻辑

Firebase是一个提供后端即服务(BaaS)的平台,它允许开发者快速构建应用程序而无需管理服务器。Firebase不直接提供生成Postback Link的功能,但您可以使用Firebase的功能来构建和管理URL,然后在客户端使用这些URL来实现Postback。 以下是如何使用Firebase和JavaScript来创建…...

docker配置daemon.json文件

报错 &#xff1a;Get "https://registry-1.docker.io/v2/": net/http: request canceled while waiting for connection (Client.Timeout exceeded while awaiting headers) 解决方法 配置加速地址 vim /etc/docker/daemon.json添加以下内容 {"registry-mirro…...

【08】纯血鸿蒙HarmonyOS NEXT星河版开发0基础学习笔记-Scroll容器与Tabs组件

序言&#xff1a; 本文详细讲解了关于我们在页面上经常看到的可滚动页面和导航栏在鸿蒙开发中如何用Scroll和Tabs组件实现&#xff0c;介绍了Scroll和Tabs的基本用法与属性。 笔者也是跟着B站黑马的课程一步步学习&#xff0c;学习的过程中添加部分自己的想法整理为笔记分享出…...

苏州 数字化科技展厅展馆-「世岩科技」一站式服务商

数字化科技展厅展馆设计施工是一个综合性强、技术要求高的项目&#xff0c;涉及到众多方面的要点。以下是对数字化科技展厅展馆设计施工要点的详细分析&#xff1a; 一、明确目标与定位 在设计之初&#xff0c;必须明确展厅的目标和定位。这包括确定展厅的主题、目标受众、展…...

商丘网站/深圳seo网络推广

蓝桥杯 --- 二分与前缀和&#xff08;习题&#xff09;730. 机器人跳跃问题1221. 四平方和1227. 分巧克力99. 激光炸弹1230. K倍区间730. 机器人跳跃问题 机器人正在玩一个古老的基于 DOS 的游戏。 游戏中有 N1 座建筑——从 0 到 N 编号&#xff0c;从左到右排列。 编号为 …...

服务器不是自己的做违法网站/企业网站模板免费

在php中不支持多重继承&#xff0c;如果我们向使用多个类的方法而实现代码重用有什么办法么&#xff1f;那就是组合。在一个类中去将另外一个类设置成属性。下面的例子&#xff0c;模拟了多重继承。view sourceprint?0102 class user {03 private $name "tom";04 p…...

wordpress datediff/游戏搜索风云榜

2019独角兽企业重金招聘Python工程师标准>>> 在日常性能测试或者生产运维工作中为了保证业务的准确性和及时性等各项业务与技术指标能满足日常操作与稳定运行&#xff0c;一般在工作工作会使用一些简易命令工具协助排查问题&#xff0c;例如排查CPU、内存、磁盘IO、…...

wordpress 换空间 换域名/欧美seo查询

最近一些项目开始使用机器学习和神经网络&#xff0c;有一个项目是对从搜索引擎抓回来的文字判断倾向性&#xff0c;看文章是正面的还是负面的(抱怨、怀疑、责备)&#xff0c;没办法&#xff0c;我们所服务的互联网金融最近就是一个被高度关注的领域。之前开发小组使用 R 语言基…...

做网站的目标是什么/东莞seo项目优化方法

Linux指令篇:讯息传送与信件管理--write(转)名称 : write使用权限 : 所有使用者使用方式 :write user [ttyname]说明 : 传讯息给其他使用者参数 :user : 预备传讯息的使用者帐号ttyname : 如果使用者同时有两个以上的 tty 连线&#xff0c;可以自行选择合适的 tty 传讯息例子.1…...

艺友网站建设/北京官网优化公司

降级策略RT是平均响应时间策略 设置RT的响应时间单位毫秒&#xff0c;RT最大值为4900毫秒&#xff0c;需要变更此上限可以通过启动配置项 -Dcsp.sentinel.statistic.max.rtxxx来配置 需要使用到jmeter测试工具&#xff0c;jmeter下载页面 下载zip包即可 解压后修改配置文件b…...