机器学习:opencv--摄像头OCR
目录
前言
一、三个函数
1.显示图像
2.点排序
3.透视变换
二、代码实例
1.打开摄像头
2.图像预处理
3.检测特定轮廓
4.对轮廓进行处理
5.释放资源
前言
摄像头OCR指的是利用摄像头捕捉图像中的文字信息,并通过光学字符识别(OCR)技术将其转换为可编辑的文本。
一、三个函数
1.显示图像
def cv_show(name, img):cv2.imshow(name, img)cv2.waitKey(60)
2.点排序
接收传入的坐标(为轮廓的四个顶点),
- 对每一行进行求和,
- 最小值是该轮廓的左上角,
- 最大值是右下角,
- 对每一行进行求差,
- 最小的是右上角,
- 最大的是右下角,
- 按照左上,右上,右下,左下的顺序填入rect矩阵
def order_points(pts):# 共4个坐标点rect = np.zeros((4, 2), dtype="float32") # 用来存储排序之后的坐标位置# 按顺序找到对应坐标 0 1 2 3 分别是左上,右上,右下,左下s = pts.sum(axis=1) # 对pts矩阵的每一行进行求和操作。 (x+y)rect[0] = pts[np.argmin(s)]rect[2] = pts[np.argmax(s)]diff = np.diff(pts, axis=1) # 对pts矩阵的每一行进行求差操作。(y-x)rect[1] = pts[np.argmin(diff)]rect[3] = pts[np.argmax(diff)]return rect
3.透视变换
- 获取排序之后的点坐标
- 计算该轮廓的宽和高的较大值,当做变换之后的图像宽高
- 通过cv2.getPerspectiveTransform方法计算透视变换矩阵
- 再通过cv2.warpPerspective方法获取透视变换之后的图像
def four_point_transform(image, pts):# 获取输入坐标点rect = order_points(pts)(tl, tr, br, bl) = rect# 计算输入的w和h的值 欧式距离公式widthA = np.sqrt(((br[0] - bl[0]) ** 2) + ((br[1] - bl[1]) ** 2))widthB = np.sqrt(((tr[0] - tl[0]) ** 2) + ((tr[1] - tl[1]) ** 2))maxWidth = max(int(widthA), int(widthB))heightA = np.sqrt(((tr[0] - br[0]) ** 2) + ((tr[1] - br[1]) ** 2))heightB = np.sqrt(((tl[0] - bl[0]) ** 2) + ((tl[1] - bl[1]) ** 2))maxHeight = max(int(heightA), int(heightB))# 变换后对应坐标位置dst = np.array([[0, 0], [maxWidth - 1, 0],[maxWidth - 1, maxHeight - 1], [0, maxHeight - 1]], dtype="float32")# 计算透视变换矩阵M = cv2.getPerspectiveTransform(rect, dst)# 应用透视变换warped = cv2.warpPerspective(image, M, (maxWidth, maxHeight)) # 返回变换后结果return warped
二、代码实例
1.打开摄像头
- 参数为0 则用电脑自带摄像头
- 参数为1 则用外接摄像头
- 若摄像头未被打开则输出Cannot open camera
cap = cv2.VideoCapture(0) # 确保摄像头是可以启动的状态 电脑自带摄像头用0 外接的用1
if not cap.isOpened():print("Cannot open camera")exit()
2.图像预处理
- 打开摄像头之后,读取每一帧的画面并显示
- 转换成灰度图,进行高斯滤波处理,
- 然后使用Canny算子进行边缘检测并显示,
- 再对边缘检测之后的图像进行轮廓检测,
- 只取轮廓大小前十的轮廓将其画出来,并显示
while True:flag = 0 # 标识符 当前是否检测到文档ret, image = cap.read()orig = image.copy()if not ret:print('不能读取摄像头')breakcv_show('image', image)gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)gray = cv2.GaussianBlur(gray, (5, 5), 0)edged = cv2.Canny(gray, 75, 200)cv_show('1', edged)cnts = cv2.findContours(edged.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)[1]cnts = sorted(cnts, key=cv2.contourArea, reverse=True)[:10]image_contours = cv2.drawContours(image, cnts, -1, (0, 255, 0), 2)cv_show('image_contours', image_contours)
输出:

3.检测特定轮廓
- 遍历上述获取的轮廓
- 对轮廓进行近似处理,并获取其特征点集
- 判断轮廓面积大于20000 并且特征点集只有4个
for c in cnts:peri = cv2.arcLength(c, True) # 计算轮廓的周长# True表示是否选择封闭轮廓approx = cv2.approxPolyDP(c, 0.05 * peri, True) # 返回轮廓点集area = cv2.contourArea(approx)if area > 20000 and len(approx) == 4:screenCnt = approxflag = 1print(peri, area)print('检测到文档')break
4.对轮廓进行处理
- 如果在画面中获取到了符合条件的轮廓
- 就在原图上画出该轮廓
- 并将该轮廓图像进行透视变换并显示
- 最后对其进行二值化处理并显示
if flag == 1:image_contours = cv2.drawContours(image, [screenCnt], 0, (0, 255, 0), 2)cv_show('image', image_contours)warped = four_point_transform(orig, screenCnt.reshape(4, 2))cv_show('warped', warped)warped = cv2.cvtColor(warped, cv2.COLOR_BGR2GRAY)ref = cv2.threshold(warped, 0, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)[1]cv2.imshow('ref', ref)cv2.waitKey(0)
输出:
5.释放资源
- 最后循环结束之后记得释放资源
cap.release() # 释放捕获器
cv2.destroyAllWindows() # 关闭图像窗口
相关文章:
机器学习:opencv--摄像头OCR
目录 前言 一、三个函数 1.显示图像 2.点排序 3.透视变换 二、代码实例 1.打开摄像头 2.图像预处理 3.检测特定轮廓 4.对轮廓进行处理 5.释放资源 前言 摄像头OCR指的是利用摄像头捕捉图像中的文字信息,并通过光学字符识别(OCR)技…...
基于二分查找的动态规划 leetcode 300.最长递增子序列
如题: https://leetcode.cn/problems/longest-increasing-subsequence/description/ 其实常规动态规划的解法就没什么好说的了,有意思的是官方放出了一个二分查找的动态规化解法,时间复杂度能降到O(nlog(n)),但是为什么这样能解&…...
Java8 IntStream流sum的Bug
做. - 力扣(LeetCode)的时候发现 IntStream流中的sum在相加的过程中会加到突破Int上限导致数据不对,需要装成LongStream流才能有正确的输出。 long sum Arrays.stream(milestones).asLongStream().sum(); 要这样子写,只把sum改…...
PCL 索引空间采样
目录 一、概述 1.1原理 1.2实现步骤 1.3应用场景 二、代码实现 2.1关键函数 2.1.1 索引空间采样 2.1.2 可视化原始点云和下采样后的点云 2.2完整代码 三、实现效果 PCL点云算法汇总及实战案例汇总的目录地址链接: PCL点云算法与项目实战案例汇总…...
PasteForm最佳CRUD实践,实际案例PasteTemplate详解之3000问(三)
作为“贴代码”力推的一个CRUD实践项目PasteTemplate,在对现有的3个项目进行实战后效果非常舒服!下面就针对PasteForm为啥我愿称为最佳CRUD做一些回答: 哪里可以下载这个PasteForm的项目案例 目前“贴代码”对外使用PasteForm的项目有"贴Builder(PasteSpide…...
【无标题】logistic映射
当Logistic映射中的控制参数 μ \mu μ 为负数时,系统的行为与正数 μ \mu μ 的情况截然不同。Logistic映射的一般形式是: x ( t 1 ) μ x ( t ) ( 1 − x ( t ) ) x(t1) \mu x(t) (1 - x(t)) x(t1)μx(t)(1−x(t))其中 x ( t ) x(t) x(t) 表示时…...
基于Node.js+Express+MySQL+VUE科研成果网站发布查看科研信息科研成果论文下载免费安装部署
目录 1.技术选型 2.功能设计 3.系统架构 4.开发流程 5.开发背景 6.开发目标 7.技术可行性 8.功能可行性 8.1功能图 8.2 界面设计 8.3 部分代码 构建一个基于Spring Boot、Java Web、J2EE、MySQL数据库以及Vue前后端分离的科研成果网站,可…...
提升C++代码质量的一些建议
文章目录 1. 命名清晰2. 简洁性3. 一致性4. 注释5. 避免复杂性6. 重构7. 测试8. 错误处理9. 文档10. 代码复用11. 性能优化12. 安全性- 代码规范推荐 C开发中,写出优雅且可维护的代码不仅能提升代码质量,还能提高团队协作效率和项目长期的可扩展性。以下…...
起重机防摇摆技术如何达标-武汉正向科技
武汉正向科技防摇摆控制器 主要技术参数 1、防摇摆精度: 0.4 2、行车到达目标位置偏差位置偏差: 25mm 3、通讯方式:PROFINET / PROFIBUS / RS232 / RS422 / RS485; 4、消除载荷的摇摆达 96% 以上; 5、技术先进…...
[大语言模型-论文精读] MoRAG - 基于多部分融合的检索增强型人体动作生成
MoRAG--Multi-Fusion Retrieval Augmented Generation for Human Motion KS Shashank, S Maheshwari, RK Sarvadevabhatla - arXiv preprint arXiv:2409.12140, 2024 MoRAG - 基于多部分融合的检索增强型人体动作生成 1. 目录 MoRAG--Multi-Fusion Retrieval Augmented Generat…...
解决端口被占用
当你被你的编译器提醒, 当前端口被占用, 但明明你的服务什么的都没有启用,这时有三种解决办法: 1 。 重启 。 重启解决80%的问题 2 。 修改你的端口号 。 3 。 去windows命令行中查看,端口占用情况 第一步 …...
【递归】7. leetcode 404 左叶子之和
1 题目描述 题目链接:左叶子之和 2 解答思路 递归分为三步,接下来就按照这三步来思考问题 第一步:挖掘出相同的子问题 (关系到具体函数头的设计) 第二步:只关心具体子问题做了什么 (关系…...
react+antdMobie实现消息通知页面样式
一、实现效果 二、代码 import React, { useEffect, useState } from react; import style from ./style/index.less; import { CapsuleTabs, Ellipsis, Empty, SearchBar, Tag } from antd-mobile; //消息通知页面 export default function Notification(props) {const [opti…...
Git 撤销一个已经push到远端仓库的commit
在 Git 中,撤销一个已经推送到远程仓库的改动有几种不同的方法,具体取决于你是否想要完全删除改动,还是只是恢复文件的某个状态。以下是常见的几种方法: git revert 撤销特定的commit git revert 是最安全的方法,因为…...
lambda表达式底层实现
一、lambda 代码 & 反编译 原始Java代码 假设我们有以下简单的Java程序,它使用Lambda表达式来遍历并打印一个字符串列表: import java.util.Arrays; import java.util.List;public class LambdaExample {public static void main(String[] args) {…...
鸿蒙NEXT开发-组件事件监听和状态管理(基于最新api12稳定版)
注意:博主有个鸿蒙专栏,里面从上到下有关于鸿蒙next的教学文档,大家感兴趣可以学习下 如果大家觉得博主文章写的好的话,可以点下关注,博主会一直更新鸿蒙next相关知识 专栏地址: https://blog.csdn.net/qq_56760790/…...
《More Effective C++》的学习
引用与指针 没有所谓的null reference reference一定需要代表某个对象,所以C要求reference必须有初值。 QString &s; 使用reference可能比使用pointer更高效。 因为reference一定是有效的,而指针可能为空(需要多加一个判断࿰…...
Leetcode面试经典150题-322.零钱兑换
给你一个整数数组 coins ,表示不同面额的硬币;以及一个整数 amount ,表示总金额。 计算并返回可以凑成总金额所需的 最少的硬币个数 。如果没有任何一种硬币组合能组成总金额,返回 -1 。 你可以认为每种硬币的数量是无限的。 示…...
python17_len()函数
len()函数 A B "" C "hello world" D 18 E 18def len_test(s):try:# 尝试计算字符串的长度length len(s)return lengthexcept TypeError:# 如果不是字符串,则返回 None 或者提示错误return Noneif __name__ "__main__":# 单…...
车视界系统小程序的设计
管理员账户功能包括:系统首页,个人中心,汽车品牌管理,汽车颜色管理,用户管理,汽车信息管理,汽车订单管理系统管理 微信端账号功能包括:系统首页,汽车信息,我…...
Prompt Tuning、P-Tuning、Prefix Tuning的区别
一、Prompt Tuning、P-Tuning、Prefix Tuning的区别 1. Prompt Tuning(提示调优) 核心思想:固定预训练模型参数,仅学习额外的连续提示向量(通常是嵌入层的一部分)。实现方式:在输入文本前添加可训练的连续向量(软提示),模型只更新这些提示参数。优势:参数量少(仅提…...
IGP(Interior Gateway Protocol,内部网关协议)
IGP(Interior Gateway Protocol,内部网关协议) 是一种用于在一个自治系统(AS)内部传递路由信息的路由协议,主要用于在一个组织或机构的内部网络中决定数据包的最佳路径。与用于自治系统之间通信的 EGP&…...
理解 MCP 工作流:使用 Ollama 和 LangChain 构建本地 MCP 客户端
🌟 什么是 MCP? 模型控制协议 (MCP) 是一种创新的协议,旨在无缝连接 AI 模型与应用程序。 MCP 是一个开源协议,它标准化了我们的 LLM 应用程序连接所需工具和数据源并与之协作的方式。 可以把它想象成你的 AI 模型 和想要使用它…...
Ascend NPU上适配Step-Audio模型
1 概述 1.1 简述 Step-Audio 是业界首个集语音理解与生成控制一体化的产品级开源实时语音对话系统,支持多语言对话(如 中文,英文,日语),语音情感(如 开心,悲伤)&#x…...
Android15默认授权浮窗权限
我们经常有那种需求,客户需要定制的apk集成在ROM中,并且默认授予其【显示在其他应用的上层】权限,也就是我们常说的浮窗权限,那么我们就可以通过以下方法在wms、ams等系统服务的systemReady()方法中调用即可实现预置应用默认授权浮…...
用docker来安装部署freeswitch记录
今天刚才测试一个callcenter的项目,所以尝试安装freeswitch 1、使用轩辕镜像 - 中国开发者首选的专业 Docker 镜像加速服务平台 编辑下面/etc/docker/daemon.json文件为 {"registry-mirrors": ["https://docker.xuanyuan.me"] }同时可以进入轩…...
C++使用 new 来创建动态数组
问题: 不能使用变量定义数组大小 原因: 这是因为数组在内存中是连续存储的,编译器需要在编译阶段就确定数组的大小,以便正确地分配内存空间。如果允许使用变量来定义数组的大小,那么编译器就无法在编译时确定数组的大…...
代码随想录刷题day30
1、零钱兑换II 给你一个整数数组 coins 表示不同面额的硬币,另给一个整数 amount 表示总金额。 请你计算并返回可以凑成总金额的硬币组合数。如果任何硬币组合都无法凑出总金额,返回 0 。 假设每一种面额的硬币有无限个。 题目数据保证结果符合 32 位带…...
Git常用命令完全指南:从入门到精通
Git常用命令完全指南:从入门到精通 一、基础配置命令 1. 用户信息配置 # 设置全局用户名 git config --global user.name "你的名字"# 设置全局邮箱 git config --global user.email "你的邮箱example.com"# 查看所有配置 git config --list…...
第7篇:中间件全链路监控与 SQL 性能分析实践
7.1 章节导读 在构建数据库中间件的过程中,可观测性 和 性能分析 是保障系统稳定性与可维护性的核心能力。 特别是在复杂分布式场景中,必须做到: 🔍 追踪每一条 SQL 的生命周期(从入口到数据库执行)&#…...
