当前位置: 首页 > news >正文

机器学习:opencv--摄像头OCR

目录

前言

一、三个函数

1.显示图像

2.点排序

3.透视变换

二、代码实例

1.打开摄像头

2.图像预处理

3.检测特定轮廓

4.对轮廓进行处理

5.释放资源


前言

        摄像头OCR指的是利用摄像头捕捉图像中的文字信息,并通过光学字符识别(OCR)技术将其转换为可编辑的文本。

 

一、三个函数

1.显示图像

def cv_show(name, img):cv2.imshow(name, img)cv2.waitKey(60)

 

2.点排序

接收传入的坐标(为轮廓的四个顶点),

  1. 对每一行进行求和,
    1. 最小值是该轮廓的左上角,
    2. 最大值是右下角,
  2. 对每一行进行求差,
    1. 最小的是右上角,
    2. 最大的是右下角,
  3. 按照左上,右上,右下,左下的顺序填入rect矩阵
def order_points(pts):# 共4个坐标点rect = np.zeros((4, 2), dtype="float32")  # 用来存储排序之后的坐标位置# 按顺序找到对应坐标 0 1 2 3 分别是左上,右上,右下,左下s = pts.sum(axis=1)  # 对pts矩阵的每一行进行求和操作。 (x+y)rect[0] = pts[np.argmin(s)]rect[2] = pts[np.argmax(s)]diff = np.diff(pts, axis=1)  # 对pts矩阵的每一行进行求差操作。(y-x)rect[1] = pts[np.argmin(diff)]rect[3] = pts[np.argmax(diff)]return rect

 

3.透视变换

  1. 获取排序之后的点坐标
  2. 计算该轮廓的宽和高的较大值,当做变换之后的图像宽高
  3. 通过cv2.getPerspectiveTransform方法计算透视变换矩阵
  4. 再通过cv2.warpPerspective方法获取透视变换之后的图像
def four_point_transform(image, pts):# 获取输入坐标点rect = order_points(pts)(tl, tr, br, bl) = rect# 计算输入的w和h的值  欧式距离公式widthA = np.sqrt(((br[0] - bl[0]) ** 2) + ((br[1] - bl[1]) ** 2))widthB = np.sqrt(((tr[0] - tl[0]) ** 2) + ((tr[1] - tl[1]) ** 2))maxWidth = max(int(widthA), int(widthB))heightA = np.sqrt(((tr[0] - br[0]) ** 2) + ((tr[1] - br[1]) ** 2))heightB = np.sqrt(((tl[0] - bl[0]) ** 2) + ((tl[1] - bl[1]) ** 2))maxHeight = max(int(heightA), int(heightB))# 变换后对应坐标位置dst = np.array([[0, 0], [maxWidth - 1, 0],[maxWidth - 1, maxHeight - 1], [0, maxHeight - 1]], dtype="float32")# 计算透视变换矩阵M = cv2.getPerspectiveTransform(rect, dst)# 应用透视变换warped = cv2.warpPerspective(image, M, (maxWidth, maxHeight))  # 返回变换后结果return warped

 

二、代码实例

1.打开摄像头

  • 参数为0 则用电脑自带摄像头
  • 参数为1 则用外接摄像头
  • 若摄像头未被打开则输出Cannot open camera
cap = cv2.VideoCapture(0)  # 确保摄像头是可以启动的状态  电脑自带摄像头用0 外接的用1
if not cap.isOpened():print("Cannot open camera")exit()

 

2.图像预处理

  1. 打开摄像头之后,读取每一帧的画面并显示
  2. 转换成灰度图,进行高斯滤波处理,
  3. 然后使用Canny算子进行边缘检测并显示,
  4. 再对边缘检测之后的图像进行轮廓检测,
  5. 只取轮廓大小前十的轮廓将其画出来,并显示
while True:flag = 0  # 标识符 当前是否检测到文档ret, image = cap.read()orig = image.copy()if not ret:print('不能读取摄像头')breakcv_show('image', image)gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)gray = cv2.GaussianBlur(gray, (5, 5), 0)edged = cv2.Canny(gray, 75, 200)cv_show('1', edged)cnts = cv2.findContours(edged.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)[1]cnts = sorted(cnts, key=cv2.contourArea, reverse=True)[:10]image_contours = cv2.drawContours(image, cnts, -1, (0, 255, 0), 2)cv_show('image_contours', image_contours)

输出:

 

3.检测特定轮廓

  1. 遍历上述获取的轮廓 
  2. 对轮廓进行近似处理,并获取其特征点集
  3. 判断轮廓面积大于20000 并且特征点集只有4个
    for c in cnts:peri = cv2.arcLength(c, True)  # 计算轮廓的周长# True表示是否选择封闭轮廓approx = cv2.approxPolyDP(c, 0.05 * peri, True)  # 返回轮廓点集area = cv2.contourArea(approx)if area > 20000 and len(approx) == 4:screenCnt = approxflag = 1print(peri, area)print('检测到文档')break

 

4.对轮廓进行处理

  1. 如果在画面中获取到了符合条件的轮廓
  2. 就在原图上画出该轮廓
  3. 并将该轮廓图像进行透视变换并显示
  4. 最后对其进行二值化处理并显示
    if flag == 1:image_contours = cv2.drawContours(image, [screenCnt], 0, (0, 255, 0), 2)cv_show('image', image_contours)warped = four_point_transform(orig, screenCnt.reshape(4, 2))cv_show('warped', warped)warped = cv2.cvtColor(warped, cv2.COLOR_BGR2GRAY)ref = cv2.threshold(warped, 0, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)[1]cv2.imshow('ref', ref)cv2.waitKey(0)
输出:

 

5.释放资源

  • 最后循环结束之后记得释放资源
cap.release()  # 释放捕获器
cv2.destroyAllWindows()  # 关闭图像窗口

相关文章:

机器学习:opencv--摄像头OCR

目录 前言 一、三个函数 1.显示图像 2.点排序 3.透视变换 二、代码实例 1.打开摄像头 2.图像预处理 3.检测特定轮廓 4.对轮廓进行处理 5.释放资源 前言 摄像头OCR指的是利用摄像头捕捉图像中的文字信息,并通过光学字符识别(OCR)技…...

基于二分查找的动态规划 leetcode 300.最长递增子序列

如题: https://leetcode.cn/problems/longest-increasing-subsequence/description/ 其实常规动态规划的解法就没什么好说的了,有意思的是官方放出了一个二分查找的动态规化解法,时间复杂度能降到O(nlog(n)),但是为什么这样能解&…...

Java8 IntStream流sum的Bug

做. - 力扣(LeetCode)的时候发现 IntStream流中的sum在相加的过程中会加到突破Int上限导致数据不对,需要装成LongStream流才能有正确的输出。 long sum Arrays.stream(milestones).asLongStream().sum(); 要这样子写,只把sum改…...

PCL 索引空间采样

目录 一、概述 1.1原理 1.2实现步骤 1.3应用场景 二、代码实现 2.1关键函数 2.1.1 索引空间采样 2.1.2 可视化原始点云和下采样后的点云 2.2完整代码 三、实现效果 PCL点云算法汇总及实战案例汇总的目录地址链接: PCL点云算法与项目实战案例汇总&#xf…...

PasteForm最佳CRUD实践,实际案例PasteTemplate详解之3000问(三)

作为“贴代码”力推的一个CRUD实践项目PasteTemplate,在对现有的3个项目进行实战后效果非常舒服!下面就针对PasteForm为啥我愿称为最佳CRUD做一些回答: 哪里可以下载这个PasteForm的项目案例 目前“贴代码”对外使用PasteForm的项目有"贴Builder(PasteSpide…...

【无标题】logistic映射

当Logistic映射中的控制参数 μ \mu μ 为负数时,系统的行为与正数 μ \mu μ 的情况截然不同。Logistic映射的一般形式是: x ( t 1 ) μ x ( t ) ( 1 − x ( t ) ) x(t1) \mu x(t) (1 - x(t)) x(t1)μx(t)(1−x(t))其中 x ( t ) x(t) x(t) 表示时…...

基于Node.js+Express+MySQL+VUE科研成果网站发布查看科研信息科研成果论文下载免费安装部署

目录 1.技术选型‌ ‌2.功能设计‌ ‌3.系统架构‌ ‌4.开发流程‌ 5.开发背景 6.开发目标 7.技术可行性 8.功能可行性 8.1功能图 8.2 界面设计 8.3 部分代码 构建一个基于Spring Boot、Java Web、J2EE、MySQL数据库以及Vue前后端分离的科研成果网站,可…...

提升C++代码质量的一些建议

文章目录 1. 命名清晰2. 简洁性3. 一致性4. 注释5. 避免复杂性6. 重构7. 测试8. 错误处理9. 文档10. 代码复用11. 性能优化12. 安全性- 代码规范推荐 C开发中,写出优雅且可维护的代码不仅能提升代码质量,还能提高团队协作效率和项目长期的可扩展性。以下…...

起重机防摇摆技术如何达标-武汉正向科技

武汉正向科技防摇摆控制器 主要技术参数 1、防摇摆精度: 0.4 2、行车到达目标位置偏差位置偏差: 25mm 3、通讯方式:PROFINET / PROFIBUS / RS232 / RS422 / RS485; 4、消除载荷的摇摆达 96% 以上; 5、技术先进…...

[大语言模型-论文精读] MoRAG - 基于多部分融合的检索增强型人体动作生成

MoRAG--Multi-Fusion Retrieval Augmented Generation for Human Motion KS Shashank, S Maheshwari, RK Sarvadevabhatla - arXiv preprint arXiv:2409.12140, 2024 MoRAG - 基于多部分融合的检索增强型人体动作生成 1. 目录 MoRAG--Multi-Fusion Retrieval Augmented Generat…...

解决端口被占用

当你被你的编译器提醒, 当前端口被占用, 但明明你的服务什么的都没有启用,这时有三种解决办法: 1 。 重启 。 重启解决80%的问题 2 。 修改你的端口号 。 3 。 去windows命令行中查看,端口占用情况 第一步 &#xf…...

【递归】7. leetcode 404 左叶子之和

1 题目描述 题目链接:左叶子之和 2 解答思路 递归分为三步,接下来就按照这三步来思考问题 第一步:挖掘出相同的子问题 (关系到具体函数头的设计) 第二步:只关心具体子问题做了什么 (关系…...

react+antdMobie实现消息通知页面样式

一、实现效果 二、代码 import React, { useEffect, useState } from react; import style from ./style/index.less; import { CapsuleTabs, Ellipsis, Empty, SearchBar, Tag } from antd-mobile; //消息通知页面 export default function Notification(props) {const [opti…...

Git 撤销一个已经push到远端仓库的commit

在 Git 中,撤销一个已经推送到远程仓库的改动有几种不同的方法,具体取决于你是否想要完全删除改动,还是只是恢复文件的某个状态。以下是常见的几种方法: git revert 撤销特定的commit git revert 是最安全的方法,因为…...

lambda表达式底层实现

一、lambda 代码 & 反编译 原始Java代码 假设我们有以下简单的Java程序,它使用Lambda表达式来遍历并打印一个字符串列表: import java.util.Arrays; import java.util.List;public class LambdaExample {public static void main(String[] args) {…...

鸿蒙NEXT开发-组件事件监听和状态管理(基于最新api12稳定版)

注意:博主有个鸿蒙专栏,里面从上到下有关于鸿蒙next的教学文档,大家感兴趣可以学习下 如果大家觉得博主文章写的好的话,可以点下关注,博主会一直更新鸿蒙next相关知识 专栏地址: https://blog.csdn.net/qq_56760790/…...

《More Effective C++》的学习

引用与指针 没有所谓的null reference reference一定需要代表某个对象,所以C要求reference必须有初值。 QString &s; 使用reference可能比使用pointer更高效。 因为reference一定是有效的,而指针可能为空(需要多加一个判断&#xff0…...

Leetcode面试经典150题-322.零钱兑换

给你一个整数数组 coins ,表示不同面额的硬币;以及一个整数 amount ,表示总金额。 计算并返回可以凑成总金额所需的 最少的硬币个数 。如果没有任何一种硬币组合能组成总金额,返回 -1 。 你可以认为每种硬币的数量是无限的。 示…...

python17_len()函数

len()函数 A B "" C "hello world" D 18 E 18def len_test(s):try:# 尝试计算字符串的长度length len(s)return lengthexcept TypeError:# 如果不是字符串,则返回 None 或者提示错误return Noneif __name__ "__main__":# 单…...

车视界系统小程序的设计

管理员账户功能包括:系统首页,个人中心,汽车品牌管理,汽车颜色管理,用户管理,汽车信息管理,汽车订单管理系统管理 微信端账号功能包括:系统首页,汽车信息,我…...

第19节 Node.js Express 框架

Express 是一个为Node.js设计的web开发框架,它基于nodejs平台。 Express 简介 Express是一个简洁而灵活的node.js Web应用框架, 提供了一系列强大特性帮助你创建各种Web应用,和丰富的HTTP工具。 使用Express可以快速地搭建一个完整功能的网站。 Expre…...

Appium+python自动化(十六)- ADB命令

简介 Android 调试桥(adb)是多种用途的工具,该工具可以帮助你你管理设备或模拟器 的状态。 adb ( Android Debug Bridge)是一个通用命令行工具,其允许您与模拟器实例或连接的 Android 设备进行通信。它可为各种设备操作提供便利,如安装和调试…...

day52 ResNet18 CBAM

在深度学习的旅程中,我们不断探索如何提升模型的性能。今天,我将分享我在 ResNet18 模型中插入 CBAM(Convolutional Block Attention Module)模块,并采用分阶段微调策略的实践过程。通过这个过程,我不仅提升…...

解锁数据库简洁之道:FastAPI与SQLModel实战指南

在构建现代Web应用程序时,与数据库的交互无疑是核心环节。虽然传统的数据库操作方式(如直接编写SQL语句与psycopg2交互)赋予了我们精细的控制权,但在面对日益复杂的业务逻辑和快速迭代的需求时,这种方式的开发效率和可…...

2025盘古石杯决赛【手机取证】

前言 第三届盘古石杯国际电子数据取证大赛决赛 最后一题没有解出来,实在找不到,希望有大佬教一下我。 还有就会议时间,我感觉不是图片时间,因为在电脑看到是其他时间用老会议系统开的会。 手机取证 1、分析鸿蒙手机检材&#x…...

uniapp微信小程序视频实时流+pc端预览方案

方案类型技术实现是否免费优点缺点适用场景延迟范围开发复杂度​WebSocket图片帧​定时拍照Base64传输✅ 完全免费无需服务器 纯前端实现高延迟高流量 帧率极低个人demo测试 超低频监控500ms-2s⭐⭐​RTMP推流​TRTC/即构SDK推流❌ 付费方案 (部分有免费额度&#x…...

SpringCloudGateway 自定义局部过滤器

场景: 将所有请求转化为同一路径请求(方便穿网配置)在请求头内标识原来路径,然后在将请求分发给不同服务 AllToOneGatewayFilterFactory import lombok.Getter; import lombok.Setter; import lombok.extern.slf4j.Slf4j; impor…...

智能仓储的未来:自动化、AI与数据分析如何重塑物流中心

当仓库学会“思考”,物流的终极形态正在诞生 想象这样的场景: 凌晨3点,某物流中心灯火通明却空无一人。AGV机器人集群根据实时订单动态规划路径;AI视觉系统在0.1秒内扫描包裹信息;数字孪生平台正模拟次日峰值流量压力…...

高效线程安全的单例模式:Python 中的懒加载与自定义初始化参数

高效线程安全的单例模式:Python 中的懒加载与自定义初始化参数 在软件开发中,单例模式(Singleton Pattern)是一种常见的设计模式,确保一个类仅有一个实例,并提供一个全局访问点。在多线程环境下,实现单例模式时需要注意线程安全问题,以防止多个线程同时创建实例,导致…...

视频行为标注工具BehaviLabel(源码+使用介绍+Windows.Exe版本)

前言: 最近在做行为检测相关的模型,用的是时空图卷积网络(STGCN),但原有kinetic-400数据集数据质量较低,需要进行细粒度的标注,同时粗略搜了下已有开源工具基本都集中于图像分割这块&#xff0c…...