卷积神经网络(CNN)的计算量和参数怎么准确估计?
🍉 CSDN 叶庭云:https://yetingyun.blog.csdn.net/
1. 卷积层(Convolutional Layer)
a) 计算量估计:
卷积层的 FLOPs = 2 * H_out * W_out * C_in * C_out * K_h * K_w
详细解释:
- H_out, W_out:输出特征图的高度和宽度
- C_in:输入通道数
- C_out:输出通道数(卷积核数量)
- K_h, K_w:卷积核的高度和宽度
- 乘以 2 是因为每次卷积操作包含一次乘法和一次加法
注意:输出特征图的尺寸可以通过以下公式计算:
H_out = (H_in - K_h + 2P) / S + 1
W_out = (W_in - K_w + 2P) / S + 1
其中,H_in 和 W_in 是输入特征图的高度和宽度,P 是填充(padding),S 是步长(stride)。
b) 参数数量估计:
卷积层的参数数 = (K_h * K_w * C_in + 1) * C_out
解释:
- K_h * K_w * C_in 是每个卷积核的权重数量
- 加 1 是因为每个卷积核还有一个偏置项(bias)
- 乘以 C_out 是因为有 C_out 个卷积核
2. 全连接层(Fully Connected Layer)
a) 计算量估计:
全连接层的 FLOPs = 2 * N_in * N_out
解释:
- N_in:输入神经元数量
- N_out:输出神经元数量
- 乘以 2 同样是因为每个连接包含一次乘法和一次加法
b) 参数数量估计:
全连接层的参数数 = (N_in + 1) * N_out
解释:
- N_in * N_out 是权重的数量
- 加 1 再乘以 N_out 是因为每个输出神经元有一个偏置项
3. 池化层(Pooling Layer)
a) 计算量估计:
对于最大池化(Max Pooling):FLOPs ≈ H_out * W_out * C * K_h * K_w
对于平均池化(Average Pooling):FLOPs ≈ 2 * H_out * W_out * C * K_h * K_w
解释:
- H_out, W_out:输出特征图的尺寸
- C:通道数(与输入相同)
- K_h, K_w:池化窗口的高度和宽度
b) 参数数量:池化层通常没有可学习的参数
4. 激活函数(Activation Functions)
激活函数的计算量通常较小,但在精确计算时可以考虑:
ReLU 的 FLOPs ≈ H * W * C (仅需要比较操作)
Sigmoid / {/} /Tanh 的 FLOPs 会更多,因为涉及指数计算
5. 批归一化层(Batch Normalization)
a) 计算量估计:
BN 层的 FLOPs ≈ 4 * H * W * C
解释:需要计算均值、方差、归一化和缩放 / {/} / 平移
b) 参数数量:
BN 层的参数数 = 2 * C (每个通道有一个缩放因子和一个平移因子)
6. 总体估算
要估算整个 CNN 的计算量和参数数量,需要:
- 分析网络架构中的每一层
- 根据上述方法计算每层的 FLOPs 和参数数
- 将所有层的结果相加
注意事项:
- 实际运行时的计算量可能与理论估计有差异,因为现代硬件和优化技术可能会影响实际性能。
- 某些操作(如数据传输)虽然不直接体现在 FLOPs 中,但也会影响实际运行时间。
- 在设计神经网络时,平衡计算复杂度和模型性能是很重要的。
相关文章:

卷积神经网络(CNN)的计算量和参数怎么准确估计?
🍉 CSDN 叶庭云:https://yetingyun.blog.csdn.net/ 1. 卷积层(Convolutional Layer) a) 计算量估计: 卷积层的 FLOPs 2 * H_out * W_out * C_in * C_out * K_h * K_w 详细解释: H_out, W_outÿ…...
Ruby基础语法
Ruby 是一种动态、反射和面向对象的编程语言,它以其简洁的语法和强大的功能而受到许多开发者的喜爱。以下是 Ruby 语言的一些基本语法: 1. 打印输出 puts "Hello, Ruby!" 变量赋值 x 10 name "John" 2. 数据类型 Ruby 有多种…...

插入排序C++
题目: 样例解释: 【样例解释 #1】 在修改操作之前,假设 H 老师进行了一次插入排序,则原序列的三个元素在排序结束后所处的位置分别是 3,2,1。 在修改操作之后,假设 H 老师进行了一次插入排序,则原序列的三个…...

修改ID不能用关键字作为ID校验器-elementPlus
1、校验器方法 - forbiddenCharValidator const idUpdateFormRef ref(null); const forbiddenCharValidator (rule, value, callback) > {const forbiddenCharacters [as,for,default,in,join,left,inner,right,where,when,case,select];for (let forbiddenCharacter o…...

一文详解WebRTC、RTSP、RTMP、SRT
背景 好多开发者,希望对WebRTC、RTSP、RTMP、SRT有个初步的了解,知道什么场景该做怎样的方案选择,本文就四者区别做个大概的介绍。 WebRTC 提到WebRTC,相信好多开发者第一件事想到的就是低延迟,WebRTC(W…...

全国职业院校技能大赛(大数据赛项)-平台搭建Zookeeper笔记
ZooKeeper是一个分布式的、开放源码的分布式应用程序协调服务,为分布式应用提供一致性服务。它的设计目标是简化分布式系统的管理,保证多个节点之间的数据一致性和协调工作。ZooKeeper提供了类似文件系统的层次化命名空间,用来存储和管理元数…...
不同领域神经网络一般选择什么模型作为baseline(基准模型)
在神经网络研究中,选择合适的baseline(基线模型)是评估新方法有效性的重要步骤。基线模型通常是领域内公认的、性能良好的参考模型,用于比较和验证新提出模型的优势。以下是一些在不同任务和领域中常见的基线模型选择:…...

华为-IPv6与IPv4网络互通的6to4自动隧道配置实验
IPv4向IPv6的过渡不是一次性的,而是逐步地分层次地。在过渡时期,为了保证IPv4和IPv6能够共存、互通,人们发明了一些IPv4/IPv6的互通技术。 本实验以6to4技术为例,阐述如何配置IPv6过渡技术。 配置参考 R1 # sysname R1 # ipv6# interface GigabitEthernet0/0/1ip address 200…...
【spring中event】事件简单使用
定义事件类 /* * 1. 定义事件类 * 首先,我们创建一个自定义事件 UserRegisteredEvent,用于表示用户注册事件。 * */ public class UserRegisteredEvent extends ApplicationEvent {private final String email;public UserRegisteredEvent(Object sourc…...

leetcode每日一题day19(24.9.29)——买票需要的时间
思路:在最开始的情况下每人需要买的票数减一是能保持相对位置不变的, 如果再想减一就有可能 有某些人只买一张票,而离开了队伍, 所有容易想到对于某个人如果比当前的人买的多就按当前的人数量算 因为在一次次减一的情况下…...

智源研究院推出全球首个中文大模型辩论平台FlagEval Debate
近日,智源研究院推出全球首个中文大模型辩论平台FlagEval Debate,旨在通过引入模型辩论这一竞争机制对大语言模型能力评估提供新的度量标尺。该平台是智源模型对战评测服务FlagEval大模型角斗场的延展,将有助于甄别大语言模型的能力差异。 F…...
python实用脚本(二):删除xml标签下的指定类别
介绍 在目标检测中,有些时候会遇到标注好的类别不想要了的情况,这时我们可以运行下面的代码来批量删除不需要的类别节省时间。 代码实现: import argparseimport xml.etree.ElementTree as ET import osclasses [thin_smoke]def GetImgNam…...
vue3 父子组件调用
vue3 父子组件调用 父组件调用子组件方法 子组件使用defineExpose将方法抛出 父组件定义 function,子组件通过 defineExpose 暴露方法,父组件通过 ref 获取子组件实例,然后通过 ref 获取子组件方法。 // 父组件 <template><div>…...

线性模型到神经网络
🚀 在初始神经网络那一节(链接如下:初始神经网络)的最后,我们通过加大考虑的天数使得我们最后得到的模型Loss最终停留在了0.32k,当我们在想让模型更加准确的时候,是做不到的,因为我们…...

【架构】前台、中台、后台
文章目录 前台、中台、后台1. 前台(Frontend)特点:技术栈: 2. 中台(Middleware)特点:技术栈: 3. 后台(Backend)特点:技术栈: 示例场景…...
Stable Diffusion 蒙版:填充、原图、潜空间噪声(潜变量噪声)、潜空间数值零(潜变量数值零)
在Stable Diffusion中,蒙版是一个重要工具,它允许用户对图像的特定部分进行编辑或重绘。关于蒙版蒙住的内容处理选项,包括填充、原图、潜空间噪声(潜变量噪声)、浅空间数值零(潜变量数值零)&…...
ffmpeg录制视频功能
本文目录 1.环境配置2.ffmpeg编解码的主要逻辑:3. 捕获屏幕帧与写入输出文件4. 释放资源 在录制结束时,释放所有分配的资源。5.自定义I/O上下文6.对于ACC编码器注意事项 1.环境配置 下载并安装FFmpeg库 在Windows上 从FFmpeg官方网站下载预编译的FFmpeg…...

【LeetCode】每日一题 2024_10_1 最低票价(记忆化搜索/DP)
前言 每天和你一起刷 LeetCode 每日一题~ 大家国庆节快乐呀~ LeetCode 启动! 题目:最低票价 代码与解题思路 今天这道题是经典动态规划,我们定义 dfs(i) 表示从第 1 天到 第 i 天的最小花费,然后使用祖传的:从记忆…...
[C++] 小游戏 征伐 SLG DNF 0.0.1 版本 zty出品
目录 先赞后看 养成习惯 War and Expedition SLG DNF 0.0.1 version 讲人话就是 图标解释: 绿色代表空地,可通过,对应数值 0 蓝色“~ ”为水,不可通过,对应数值 1 棕色“”为桥梁,可通过࿰…...

黑马头条day7-app端文章搜索
今天的内容也只是跑了一下 对于具体的实现掌握的很差 仔细看 es 在微服务学的es使用基本忘光了 这里用起来一点都熟悉 重学!!! kafka异步 文章自动构建索引的时候用到了‘’ mongoDB 用来存储用户的搜索记录 遗忘(拦截器 j…...

docker详细操作--未完待续
docker介绍 docker官网: Docker:加速容器应用程序开发 harbor官网:Harbor - Harbor 中文 使用docker加速器: Docker镜像极速下载服务 - 毫秒镜像 是什么 Docker 是一种开源的容器化平台,用于将应用程序及其依赖项(如库、运行时环…...

黑马Mybatis
Mybatis 表现层:页面展示 业务层:逻辑处理 持久层:持久数据化保存 在这里插入图片描述 Mybatis快速入门 
基于ASP.NET+ SQL Server实现(Web)医院信息管理系统
医院信息管理系统 1. 课程设计内容 在 visual studio 2017 平台上,开发一个“医院信息管理系统”Web 程序。 2. 课程设计目的 综合运用 c#.net 知识,在 vs 2017 平台上,进行 ASP.NET 应用程序和简易网站的开发;初步熟悉开发一…...

PPT|230页| 制造集团企业供应链端到端的数字化解决方案:从需求到结算的全链路业务闭环构建
制造业采购供应链管理是企业运营的核心环节,供应链协同管理在供应链上下游企业之间建立紧密的合作关系,通过信息共享、资源整合、业务协同等方式,实现供应链的全面管理和优化,提高供应链的效率和透明度,降低供应链的成…...
在 Nginx Stream 层“改写”MQTT ngx_stream_mqtt_filter_module
1、为什么要修改 CONNECT 报文? 多租户隔离:自动为接入设备追加租户前缀,后端按 ClientID 拆分队列。零代码鉴权:将入站用户名替换为 OAuth Access-Token,后端 Broker 统一校验。灰度发布:根据 IP/地理位写…...

MySQL 8.0 OCP 英文题库解析(十三)
Oracle 为庆祝 MySQL 30 周年,截止到 2025.07.31 之前。所有人均可以免费考取原价245美元的MySQL OCP 认证。 从今天开始,将英文题库免费公布出来,并进行解析,帮助大家在一个月之内轻松通过OCP认证。 本期公布试题111~120 试题1…...

零基础设计模式——行为型模式 - 责任链模式
第四部分:行为型模式 - 责任链模式 (Chain of Responsibility Pattern) 欢迎来到行为型模式的学习!行为型模式关注对象之间的职责分配、算法封装和对象间的交互。我们将学习的第一个行为型模式是责任链模式。 核心思想:使多个对象都有机会处…...

前端开发面试题总结-JavaScript篇(一)
文章目录 JavaScript高频问答一、作用域与闭包1.什么是闭包(Closure)?闭包有什么应用场景和潜在问题?2.解释 JavaScript 的作用域链(Scope Chain) 二、原型与继承3.原型链是什么?如何实现继承&a…...
在鸿蒙HarmonyOS 5中使用DevEco Studio实现录音机应用
1. 项目配置与权限设置 1.1 配置module.json5 {"module": {"requestPermissions": [{"name": "ohos.permission.MICROPHONE","reason": "录音需要麦克风权限"},{"name": "ohos.permission.WRITE…...
tomcat入门
1 tomcat 是什么 apache开发的web服务器可以为java web程序提供运行环境tomcat是一款高效,稳定,易于使用的web服务器tomcathttp服务器Servlet服务器 2 tomcat 目录介绍 -bin #存放tomcat的脚本 -conf #存放tomcat的配置文件 ---catalina.policy #to…...