当前位置: 首页 > news >正文

最大正方形 Python题解

最大正方形

题目描述

在一个 n × m n\times m n×m 的只包含 0 0 0 1 1 1 的矩阵里找出一个不包含 0 0 0 的最大正方形,输出边长。

输入格式

输入文件第一行为两个整数 n , m ( 1 ≤ n , m ≤ 100 ) n,m(1\leq n,m\leq 100) n,m(1n,m100),接下来 n n n 行,每行 m m m 个数字,用空格隔开, 0 0 0 1 1 1

输出格式

一个整数,最大正方形的边长。

样例 #1

样例输入 #1

4 4
0 1 1 1
1 1 1 0
0 1 1 0
1 1 0 1

样例输出 #1

2

题解

这道题AcWing、洛谷和leetCode都有,只是输入还有输出的些微区别,这里只提供洛谷的Python代码,思路是一样的。

这道题其实不难看出来可以用动态规划做,但是我做这道题的时候是有人要求我先用前缀和做一遍了,所以我这里提供两种思路

1、前缀和

这道题前缀和做法其实很简单,就是看我们想要通过求的正方形的前缀和来求该正方形的面积,如果求出来的面积与正方形边长平方相等,那么这个边长的正方形就满足要求

if 通过前缀和求的面积 == 正方形边长 ** 2:return True

在这里插入图片描述
怎么通过前缀和求矩形面积呢?我们可以通过下面公式来计算:
i 2 , j 2 i_2, j_2 i2,j2 为矩形右下角, i 1 , j 1 = i 2 − l e n S q u a r e + 1 , j 2 − l e n S q u a r e + 1 i_1, j_1 = i_2 - lenSquare + 1, j_2 - lenSquare + 1 i1,j1=i2lenSquare+1,j2lenSquare+1 为矩形左上角,那么通过前缀和求矩形面积公式为:
S i z e ( S q u a r e ) = P r e f i x [ i 2 ] [ j 2 ] − P r e f i x [ i 1 − 1 ] [ j 2 ] − P r e f i x [ i 2 ] [ j 1 − 1 ] + P r e f i x [ i 1 − 1 ] [ j 1 − 1 ] Size(Square) =Prefix[i_2][j_2] -Prefix[i_1-1][j_2]-Prefix[i_2][j_1-1] +Prefix[i_1-1][j_1-1] Size(Square)=Prefix[i2][j2]Prefix[i11][j2]Prefix[i2][j11]+Prefix[i11][j11]

下面这张图为上图的前缀和矩阵:
在这里插入图片描述
那么穷举求出每种正方形边长的情况,我们就可以得到可能的正方形边长

欸,别急,直接穷举正方形边长还是慢了,正方形边长是从小到大穷举的,我们可以使用二分来加速对边长的举证:

if mid正方边长满足要求:我们去找是否存在更大的边长满足要求:left = mid + 1
else:mid长度都不符合要求的,直接去找更小的边长了: right = mid - 1

最后得出Python代码(时间复杂度为 O ( N 2 l o g 2 N ) O(N^2log_2N) O(N2log2N)):

def judge(lenEdge, Prefix):global N, Mfor i in range(lenEdge, N+1):for j in range(lenEdge, M+1):if Prefix[i][j] - Prefix[i-lenEdge][j] - Prefix[i][j-lenEdge] + Prefix[i-lenEdge][j-lenEdge] == lenEdge**2:return Trueelse:return FalseN, M = map(int, input().strip().split())
A = [[0 for _ in range(M+1)]]
for i in range(1, N+1):tmp = [0]tmp.extend(map(int, input().strip().split()))A.append(tmp)
Prefix = [[0 for _ in range(M+1)] for _ in range(N+1)]
for i in range(1, N+1):for j in range(1, M+1):Prefix[i][j] = Prefix[i-1][j] + Prefix[i][j-1] - Prefix[i-1][j-1] + A[i][j]
left, right = 0, min(N, M)
ans = 0
while left <= right:mid = (left + right) // 2if judge(mid, Prefix):ans = max(ans, mid)left = mid + 1else:right = mid - 1
print(ans)

在这里插入图片描述

2、动态规划法

动态规划法的想法更容易想到,这里用图来说明一下:

在这里插入图片描述

定义 i , j i,j i,j为正方形的左下角坐标,且 d p [ i ] [ j ] dp[i][j] dp[i][j]存的是该正方形的边长
( 4 , 4 ) (4,4) (4,4)代表的正方形的边长可以从红色、蓝色、绿色,( ( 3 , 3 ) , ( 3 , 4 ) , ( 4 , 3 ) (3,3),(3,4),(4,3) (3,3),(3,4),(4,3))三种颜色的正方形来得出,
可以看出来,黑色框出正方形边长为1+1 = 2,通过多画图推导,得出下面的公式:
d p [ i ] [ j ] = m i n ( d p [ i − 1 ] [ j ] , d p [ i ] [ j − 1 ] , d p [ i − 1 ] [ j − 1 ] ) + 1 dp[i][j] = min(dp[i-1][j],dp[i][j-1],dp[i-1][j-1]) + 1 dp[i][j]=min(dp[i1][j],dp[i][j1],dp[i1][j1])+1

时间复杂度为 O ( N 2 ) O(N^2) O(N2)

N, M = map(int, input().strip().split())
A = [[0 for _ in range(M)]] + [[0] + list(map(int, input().strip().split())) for _ in range(N)]
dp = [[0 for _ in range(M+1)] for _ in range(N+1)]
ans = 0
for i in range(1, N+1):for j in range(1, M+1):if A[i][j] == 1:dp[i][j] = min(dp[i-1][j], dp[i][j-1], dp[i-1][j-1]) + 1ans = max(ans, dp[i][j])
print(ans)

在这里插入图片描述

相关文章:

最大正方形 Python题解

最大正方形 题目描述 在一个 n m n\times m nm 的只包含 0 0 0 和 1 1 1 的矩阵里找出一个不包含 0 0 0 的最大正方形&#xff0c;输出边长。 输入格式 输入文件第一行为两个整数 n , m ( 1 ≤ n , m ≤ 100 ) n,m(1\leq n,m\leq 100) n,m(1≤n,m≤100)&#xff0c;接…...

ubuntu中软件的进程管理-结束软件运行

在Ubuntu系统中&#xff0c;当某个运行中的软件无法正常退出时&#xff0c;可以通过以下几种方法强制结束该软件&#xff1a; 方法一&#xff1a;使用系统监视器&#xff08;System Monitor&#xff09;–小白专属 这个相当于win上的资源管理器 打开系统监视器 可以通过点击屏…...

Windows环境部署Oracle 11g

Windows环境部署Oracle 11g 1.安装包下载2. 解压安装包3. 数据库安装3.1 执行安装脚本3.2 电子邮件设置3.3 配置安装选项3.4 配置系统类3.5 选择数据库安装类型3.6 选择安装类型3.7 数据库配置3.8 确认安装信息3.9 设置口令 Oracle常用命令 2023年10月中旬就弄出大致的文章&…...

C语言进阶【8】--联合体和枚举(联合体和枚举这么好用,你不想了解一下吗?)

本章概述 联合体类型的声明联合体的特点联合体的大小的计算枚举类型的声明枚举类型的优点枚举类型的使用枚举类型的大小彩蛋时刻&#xff01;&#xff01;&#xff01; 联合体类型的声明 概述&#xff1a;联合体的关键字为 union。它的结构和结构体是一样的。进行展示&#xf…...

Android OTA升级

针对Android系统OTA升级&#xff0c;MTK平台有相关介绍文档&#xff1a;https://online.mediatek.com/apps/faq/detail?faqidFAQ27117&listSW 概念一&#xff1a;OTA包的构建 AOSP full build&#xff1a;Android原生提供的全量包的构建&#xff0c;意思就是可以从任何一…...

【项目经验分享】深度学习自然语言处理技术毕业设计项目案例定制

以下毕业设计是与深度学习自然语言处理&#xff08;NLP&#xff09;相关的毕业设计项目案例&#xff0c;涵盖文本分类、生成式模型、语义理解、机器翻译、对话系统、情感分析等多个领域&#xff1a; 实现案例截图&#xff1a; 基于深度学习的文本分类系统基于BERT的情感分析系…...

一觉醒来,YOLO11 冷不丁就来了

&#x1f947; 版权: 本文由【墨理学AI】原创首发、各位读者大大、敬请查阅、感谢三连 &#x1f389; 声明: 作为全网 AI 领域 干货最多的博主之一&#xff0c;❤️ 不负光阴不负卿 ❤️ 文章目录 前言&#xff1a;一觉醒来&#xff0c;YOLO11 冷不丁就来了ultralytics 版本更新…...

智能编辑器、版本控制与自动化脚本

在繁忙的工作中&#xff0c;每个开发者都渴望拥有一个“秘密武器”&#xff0c;帮助自己提升效率、减少错误&#xff0c;从而更快地完成任务。那么&#xff0c;在众多编程工具中&#xff0c;哪一款能够成为你的工作效率翻倍的“秘密武器”呢&#xff1f;本文将探讨智能的代码编…...

jenkinsfile实现镜像构建、发布

实现代码打包编译 容器镜像构建 jenkins编译采用docker构建。 遇到问题: 1.需要限制docker 容器的内存和cpu docker { image ‘ccr.ccs.tencentyun.com/libary/maven:3.6.3-jdk-8’ args “-v ${WORKSPACE}:/workspace --memory‘2048m’ --cpus‘1’” } 2.jenkins构建需要限制…...

OSPF路由计算

关于OSPF路由的基础概述可以看看这篇博客 动态路由---OSPF协议基础https://blog.csdn.net/ZZZCY2003/article/details/141335261 区域内路由计算 LSA概述 LSA是OSPF进行路由计算的关键依据OSPF的LSU报文可以携带多种不同类型的LSA各种类型的LSA拥有相同的报文头部 重要字段解…...

【设计模式-迭代】

定义 迭代器模式&#xff08;Iterator Pattern&#xff09;是一种行为型设计模式&#xff0c;用于提供一种顺序访问集合对象元素的方式&#xff0c;而不暴露该对象的内部表示。通过迭代器&#xff0c;客户端可以在不需要了解集合实现的细节的情况下遍历集合中的元素。 UML图 …...

k8s搭建双主的mysql8集群---无坑

《k8s搭建一主三从的mysql8集群---无坑-CSDN博客》通过搭建一主三从&#xff0c;我们能理解到主节点只有1个&#xff0c;那么承担增删改主要还是主节点&#xff0c;如果你在从节点上去操作增删改操作&#xff0c;数据不会同步到其他节点。本章我们将实现多主&#xff08;双主&a…...

Iterm2配置主题和Oh-My-Zsh

文章目录 一、配置主题1.1 安装使用git1.2 安装手册1.2.1 激活使用主题 二、配置oh-my-zsh2.1、oh-my-zsh插件2.2、oh-my-zsh主题 [Zsh](http://zsh.org/)2.2.1、Install using Git2.2.2、Install manually2.2.3、Activating theme2.2.4、Install using [zplug](https://github…...

html+css+js实现step进度条效果

实现效果 代码实现 HTML部分 <div class"box"><ul class"step"><li class"circle actives ">1</li><li class"circle">2</li><li class"circle">3</li><li class&quo…...

OpenCV视频I/O(8)视频采集类VideoCapture之从视频源中读取一帧图像函数read()的使用

操作系统&#xff1a;ubuntu22.04 OpenCV版本&#xff1a;OpenCV4.9 IDE:Visual Studio Code 编程语言&#xff1a;C11 算法描述 抓取、解码并返回下一个视频帧。 cv::VideoCapture::read() 是 VideoCapture 类的一个成员函数&#xff0c;用于从视频源中读取一帧图像. 该方法…...

深度学习500问——Chapter17:模型压缩及移动端部署(2)

文章目录 17.4.6 低秩分解 17.4.7 总体压缩效果评价指标有哪些 17.4.8 几种轻量化网络结构对比 17.4.9 网络压缩未来研究方向有哪些 17.5 目前有哪些深度学习模型优化加速方法 17.5.1 模型优化加速方法 17.5.2 TensorRT加速原理 17.5.3 TensorRT如何优化重构模型 17.5.4 Tensor…...

【C#】DllImport的使用

DllImport 是 C# 中用于从非托管 DLL&#xff08;动态链接库&#xff09;中导入函数的一个特性。这个特性允许你在 .NET 应用程序中调用由其他语言编写的函数&#xff0c;如 C 或 C。使用 DllImport 可以让你重用现有的非托管代码&#xff0c;而不需要重新实现这些功能。 下面…...

基于 Redis 实现滑动窗口的限流

⏳ 限流场景&#xff1a;突发流量&#xff0c;恶意流量&#xff0c;业务本身需要 基于 Redis 实现滑动窗口的限流是一种常见且高效的做法。Redis 是一种内存数据库&#xff0c;具有高性能和支持原子操作的特点&#xff0c;非常适合用来实现限流功能。下面是一个使用 Redis 实现…...

Camera Raw:打开图像

在图像工作流程中&#xff0c;无论是 Raw 格式图像文件还是 JPEG、TIFF 文件&#xff0c;都可以先使用 Camera Raw 打开并调整后&#xff0c;再进入其它 Adobe 软件如 Photoshop 中进行进一步的编辑和处理。 一、打开 Raw 格式图像 1、通过 Adobe Bridge 打开 在 Adobe Bridge …...

RK3588主板PCB设计学习(六)

可以在其它层对过孔进行削盘处理&#xff0c; 可以看到&#xff0c;这里有些过孔用不上&#xff0c;在这一层进行了削盘处理&#xff1a; 对于这种电源层进行铺铜操作的时候&#xff0c;如果不进行削盘处理的话这些焊盘可能导致这个电源层面不完整&#xff0c;存在割裂的风险&a…...

论文阅读(十一):CBAM: Convolutional Block Attention Module

文章目录 IntroductionConvolutional Block Attention ModuleExperimentsConclusion 论文题目&#xff1a;CBAM: Convolutional Block Attention Module&#xff08;CBAM&#xff1a;卷积注意力机制&#xff09;   论文链接&#xff1a;点击跳转   代码链接&#xff1a;Git…...

【Kubernetes】常见面试题汇总(四十八)

目录 108.考虑一家拥有非常分散的系统的跨国公司&#xff0c;希望解决整体代码库问题。您认为公司如何解决他们的问题&#xff1f; 109.我们所有人都知道从单服务到微服务的转变从开发方面解决了问题&#xff0c;但在部署方面却增加了问题。公司如何解决部署方面的问题&#x…...

Qt Creator安卓环境配置【筑基篇】

1.前言 由于我的Qt Creator目前就先的14版本IDE老是存在各种莫名奇妙的bug&#xff0c;我都已经成为官方Qt Forum官方论坛的常客了。有一说一新版本的各种设置不小心误触是真的坑死人。不说了给我小主机配置安卓环境了。小主机系统版本window11-23H,Qt-Creator版本是13.01版本…...

利用SpringBoot构建高效社区医院平台

2相关技术 2.1 MYSQL数据库 MySQL是一个真正的多用户、多线程SQL数据库服务器。 是基于SQL的客户/服务器模式的关系数据库管理系统&#xff0c;它的有点有有功能强大、使用简单、管理方便、安全可靠性高、运行速度快、多线程、跨平台性、完全网络化、稳定性等&#xff0c;非常…...

【C++ 前缀和 数论】1590. 使数组和能被 P 整除|2038

本文涉及的基础知识点 C算法&#xff1a;前缀和、前缀乘积、前缀异或的原理、源码及测试用例 包括课程视频 质数、最大公约数、菲蜀定理 LeetCode 1590. 使数组和能被 P 整除 给你一个正整数数组 nums&#xff0c;请你移除 最短 子数组&#xff08;可以为 空&#xff09;&am…...

外部引入的 JavaScript 放置位置

部引入的 JavaScript 通常有两种常见的放置位置&#xff0c;每个位置都有其优缺点&#xff0c;具体取决于页面的需求和性能优化目标&#xff1a; 1. 放在页面的 <head> 标签中 这种方式在 HTML 文档的 <head> 部分引入 JavaScript 文件。 <head><scrip…...

【tbNick专享】虚拟机域控、成员服务器、降级等管理

在 VMware 中完成四台域控服务器、一台成员服务器的创建、降级域控为成员服务器&#xff0c;并创建子域的操作。 1. 创建四台域控和一台成员服务器 1.1 在 VMware 中创建虚拟机 启动 VMware Workstation&#xff1a; 打开 VMware Workstation&#xff0c;点击 “创建新的虚拟…...

Raspberry Pi3B+之Rpanion(gst)和ffmpeg验证

Raspberry Pi3B之Rpanion-gst和ffmpeg验证 1. 源由2. 分析3. 环境搭建步骤1&#xff1a;安装镜像步骤2&#xff1a;系统更新步骤3&#xff1a;安装numpy组件步骤4&#xff1a;安装python3-picamera2组件步骤4&#xff1a;安装cv2组件步骤5&#xff1a;安装ffmpeg组件步骤6&…...

数据结构编程实践20讲(Python版)—04队列

本文目录 04 队列 QueueS1 说明S2 示例普通队列循环队列双端队列优先队列S3 问题:基于普通队列实现的打印机任务管理Python3程序S4 问题:使用循环队列管理玩家移动轨迹Python3程序S5 问题:使用双端队列来管理文档操作历史Python3程序S6 问题:使用优先队列管理车辆调度Pytho…...

Ubuntu开机进入紧急模式处理

文章目录 Ubuntu开机进入紧急模式处理一、问题描述二、解决办法参考 Ubuntu开机进入紧急模式处理 一、问题描述 Ubuntu开机不能够正常启动&#xff0c;自动进入紧急模式&#xff08;You are in emergency mode&#xff09;。具体如下所示&#xff1a; 二、解决办法 按CtrlD进…...

三好街做网站公司/企业查询网

转载自&#xff1a;https://blog.csdn.net/weixin_41923961/article/details/81535185 侵删 CT三维重建主要有六种基本后处理方法 多层面重建&#xff08;MPR&#xff09; 最大密度投影&#xff08;MIP&#xff09; 表面阴影遮盖&#xff08;SSD&#xff09; 容积漫游技术&…...

上海外贸网站制作/搜索推广营销

一、Netty分层设计 Netty 采用了比较典型的三层网络架构进行设计&#xff0c;逻辑架构图如下所示&#xff1a; #第一层&#xff0c;Reactor 通信调度层&#xff0c;它由一系列辅助类完成&#xff0c;包括 Reactor 线程 NioEventLoop 以及其父类、NioSocketChannel/NioServerSo…...

wordpress 同步/2022社会热点事件及看法

3.2 数据挖掘建模过程 广州TipDM团队在多年的数据挖掘项目实施过程中&#xff0c;积累了一套行之有效的数据挖掘方法论&#xff0c;数据挖掘建模过程如图3-2所示。 3.2.1 定义挖掘目标 针对具体的数据挖掘应用需求&#xff0c;首先要非常清楚&#xff1a;本次的挖掘目标是什么&…...

中国建设委员会官方网站/360网站收录

关注“潜在价值”&#xff0c;最好的技术商业媒体&#xff0c;了解那些智慧商业 本文由潜在价值旗下 创意产品推荐平台“钛空舱”推出 钛空&#xff08;ID&#xff1a;TiKong-life&#xff09; 一个关注于科技与创意生活的选品、荐品平台 新奇、实用、品质保证 一切关于未来生活…...

阿里巴巴国际网站怎么做/美国今天刚刚发生的新闻

--带参数的游标--DECLAREdept_code emp.deptno%TYPE; --声明列类型变量三个emp_code emp.empno%TYPE;emp_name emp.ename%TYPE;CURSOR emp_cur(deptparam NUMBER) ISSELECT empno, ename FROM EMP WHERE deptno deptparam; --声明显示游标BEGINdept_code : &部门编号; --请…...

百度网页下载/简阳seo排名优化培训

概述 1. 什么是 Docker&#xff1f; Docker 是一个应用容器平台&#xff0c;管理项目中用到的所有环境&#xff08;MySQL、Redis…&#xff09; 2. Docker 和虚拟机的区别 虚拟机是携带操作系统的&#xff0c;本身很小的应用程序因为携带了操作系统而变得十分笨重&#xff0…...