当前位置: 首页 > news >正文

OpenCV-指纹识别

文章目录

  • 一、意义
  • 二、代码实现
    • 1.计算匹配点
    • 2.获取编号
    • 3.获取姓名
    • 4.主函数
  • 三、总结

一、意义

使用OpenCV进行指纹识别是一个复杂且挑战性的任务,因为指纹识别通常需要高精度的特征提取和匹配算法。虽然OpenCV提供了多种图像处理和计算机视觉的工具,但直接使用OpenCV的内置功能(如SIFT、SURF、ORB等特征检测器)进行指纹识别可能并不总是足够有效。

二、代码实现

1.计算匹配点

import os  
import cv2
def getNum(src, model):  # 读取两个指纹图像  img1 = cv2.imread(src)  img2 = cv2.imread(model)  # 创建 SIFT 特征检测器  sift = cv2.SIFT_create()  # 检测特征点和计算特征描述符  kp1, des1 = sift.detectAndCompute(img1, None)  kp2, des2 = sift.detectAndCompute(img2, None)  # 创建 FLANN 匹配器  flann = cv2.FlannBasedMatcher()  # 使用 KNN 算法找到最佳的两个匹配项  matches = flann.knnMatch(des1, des2, k=2)  # 存储好的匹配项  ok = []  for m, n in matches:  # 根据 Lowe's ratio test 过滤匹配项  if m.distance < 0.8 * n.distance:  ok.append(m)  # 返回好的匹配项的数量  num = len(ok)  return num

定义一个用于计算两个指纹图像之间匹配特征点数量的函数。这个函数使用了OpenCV库中的SIFT(Scale-Invariant Feature Transform,尺度不变特征变换)特征检测器和FLANN(Fast Library for Approximate Nearest Neighbors,快速近似最近邻)匹配器。通过计算两个指纹图像之间匹配特征点的数量来评估它们的相似性。

2.获取编号

def getID(src, database):  max_num = 0  # 初始化最大匹配点数为0  for file in os.listdir(database):  # 遍历数据库中的文件  model = os.path.join(database, file)  # 构建模型文件的完整路径  num = getNum(src, model)  # 计算当前模型与源指纹的匹配点数  print("文件名:", file, "距离:", num)  # 打印文件名和匹配点数  # 如果当前匹配点数大于最大匹配点数,则更新最大匹配点数和对应的文件名  if num > max_num:  max_num = num  name = file  # 从文件名中提取ID(这里假设文件名的第一个字符是ID)  ID = name[0] if name else None  # 如果name为空,则ID为None(这里应该添加错误处理)  # 如果最大匹配点数小于100,则将ID设置为9999(这通常不是一个好的做法,因为它可能导致混淆)  if max_num < 100 and ID is not None:  # 添加ID非空的检查  ID = 9999  return ID

定义一个从指纹数据库中识别与源指纹图像最匹配的指纹,并返回与该指纹相关联的ID。先使用 os.listdir 函数列出数据库目录中的所有文件,并构建每个文件的完整路径。调用 getNum 函数计算源指纹图像与当前模型指纹图像的匹配点数,并打印结果。如果当前匹配点数大于最大匹配点数,则更新最大匹配点数和对应的文件名。

3.获取姓名

def getName(ID):  # 定义一个字典来映射ID到姓名  nameID = {0: 'a', 1: 'b', 2: 'c', 3: 'd', 4: 'e', 5: 'f',  6: 'g', 7: 'h', 8: 'i', 9: 'j', 9999: 'k'}  # 从字典中获取姓名(如果ID不在字典中,则返回None)  name = nameID.get(int(ID))  return name

通过一个预定义的字典 nameID 来根据给定的ID获取对应的姓名。如果给定的ID不在字典中,理论上应该返回 None 或者采取其他措施来处理这种情况。

4.主函数

if __name__ == "__main__":  src = 'src.bmp'  # 源指纹图像的路径  database = 'database'  # 指纹数据库目录的路径  ID = getID(src, database)  # 获取指纹ID  name = getName(ID)  # 根据ID获取姓名  print('识别结果:', name)  # 打印识别结果

使用之前定义的 getID 和 getName 函数来识别指纹图像并打印出对应的姓名。

三、总结

该代码实现了一个简单的指纹识别系统,使用了SIFT特征和FLANN匹配器对指纹进行检测识别。但事实上我们可能遇到各种问题,所以需要根据实际应用场景对代码进行调整和优化,特别是指纹图像的预处理和特征提取部分。

相关文章:

OpenCV-指纹识别

文章目录 一、意义二、代码实现1.计算匹配点2.获取编号3.获取姓名4.主函数 三、总结 一、意义 使用OpenCV进行指纹识别是一个复杂且挑战性的任务&#xff0c;因为指纹识别通常需要高精度的特征提取和匹配算法。虽然OpenCV提供了多种图像处理和计算机视觉的工具&#xff0c;但直…...

IPD的核心思想

IPD是一套领先的、成熟的研发管理思想、模式和方法。它是根据大量成功的研发管理实践总结出来的&#xff0c;并被大量实践证明的高效的产品研发模式。 那么&#xff0c;按照IPD来开展产品研发与产品管理工作&#xff0c;应该基于哪些基本思想或原则&#xff1f;市场导向、客户…...

如何在算家云搭建MVSEP-MDX23(音频分离)

一、MVSEP-MDX23简介 模型GitHub网址&#xff1a;MVSEP-MDX23-music-separation-model/README.md 在 main ZFTurbo/MVSEP-MDX23-音乐分离模型 GitHub 上 在音视频领域&#xff0c;把已经发布的混音歌曲或者音频文件逆向分离一直是世界性的课题。音波混合的物理特性导致在没有…...

常用的Java安全框架

Spring Security&#xff1a; 就像Java安全领域的“瑞士军刀”&#xff0c;功能全面且强大。 支持认证、授权、加密、会话管理等安全功能。 与Spring框架无缝集成&#xff0c;使用起来特别方便。 社区活跃&#xff0c;文档丰富&#xff0c;遇到问题容易找到解决方案。 Apach…...

使用 PHP 的 strip_tags函数保护您的应用安全

在现代 web 开发中&#xff0c;处理用户输入是一项常见的任务。然而&#xff0c;用户输入的内容往往包含 HTML 或 PHP 标签&#xff0c;这可能会导致安全漏洞&#xff0c;如跨站脚本攻击&#xff08;XSS&#xff09;。为了解决这个问题&#xff0c;PHP 提供了一个非常有用的函数…...

您的计算机已被Lockbit3.0勒索病毒感染?恢复您的数据的方法在这里!

导言 在数字化时代&#xff0c;互联网已成为我们生活、工作和学习中不可或缺的一部分。然而&#xff0c;随着网络技术的飞速发展&#xff0c;网络安全威胁也日益严峻。其中&#xff0c;勒索病毒作为一种极具破坏性的网络攻击手段&#xff0c;正逐渐成为企业和个人面临的重大挑…...

经典sql题(十二)UDTF之Explode炸裂函数

1. EXPLODE: UDTF 函数 1.1 功能说明 EXPLODE 函数 是Hive 中的一种用户定义的表函数&#xff08;UDTF&#xff09;&#xff0c;用于将数组或映射结构中的复杂的数据结构每个元素拆分为单独的行。这在处理复杂数据时非常有用&#xff0c;尤其是在需要将嵌套数据“打散”以便更…...

【AIGC】ChatGPT提示词解析:如何打造个人IP、CSDN爆款技术文案与高效教案设计

博客主页&#xff1a; [小ᶻZ࿆] 本文专栏: AIGC | ChatGPT 文章目录 &#x1f4af;前言&#x1f4af;打造个人IP爆款文案提示词使用方法 &#x1f4af;CSDN爆款技术文案提示词使用方法 &#x1f4af;高效教案设计提示词使用方法 &#x1f4af;小结 &#x1f4af;前言 在这…...

【Ubuntu】Ubuntu常用命令

文章目录 网卡路由常用命令&#xff1a;编辑文件echo 权限设置gcc编译器&#xff1a; 重启网络服务 sudo service network-manager restart 网卡 #查看网卡信息 ip a #区分光网卡电网卡 sudo lshw -class network -businfo ifconfig ifconfig eth1 192.168.1.12/24 #重启网卡…...

架构设计笔记-5-软件工程基础知识-2

知识要点 构件组装是将库中的构件经适当修改后相互连接,或者将它们与当前开发项目中的软件元素连接,最终构成新的目标软件。 构件组装技术大体可分为: 1. 基于功能的组装技术:基于功能的组装技术采用子程序调用和参数传递的方式将构件组装起来。它要求库中的构件以子程序…...

[网络]抓包工具介绍 tcpdump

一、tcpdump tcpdump是一款基于命令行的网络抓包工具&#xff0c;可以捕获并分析传输到和从网络接口流入和流出的数据包。 1.1 安装 tcpdump 通常已经预装在大多数 Linux 发行版中。如果没有安装&#xff0c;可以使用包管理器 进行安装。例如 Ubuntu&#xff0c;可以使用以下…...

基于STM32和FPGA的射频数据采集系统设计流程

一、项目概述 高速采集射频&#xff08;RF&#xff09;信号是一个关键的需求。本文旨在设计一种基于STM32和FPGA的射频数据采集系统&#xff0c;以实现对接收到的射频信号的高精度和高速度的处理。该系统适用于无线通信、信号分析、雷达系统等应用场景。 技术栈关键词&#x…...

自动变速箱系统(A/T)详细解析

自动变速箱系统&#xff08;A/T&#xff09;&#xff0c;即Automatic Transmission&#xff0c;是一种能够在车辆行驶过程中自动完成换挡操作的传动系统。以下是对自动变速箱系统&#xff08;A/T&#xff09;的详细解析&#xff0c;内容涵盖其定义、工作原理、主要组成、类型、…...

【Kubernetes】常见面试题汇总(四十三)

目录 98. kube-apiserver 和 kube-scheduler 的作用是什么&#xff1f; 99.您对云控制器管理器了解多少&#xff1f; 特别说明&#xff1a; 题目 1-68 属于【Kubernetes】的常规概念题&#xff0c;即 “ 汇总&#xff08;一&#xff09;~&#xff08;二十二&#xff09;…...

OpenCL 学习(1)---- OpenCL 基本概念

目录 Overview异构并行计算OpenCL 架构平台模型执行模型OpenCL 上下文OpenCL 命令队列内核执行编程模型存储器模型存储器对象共享虚拟存储器 Overview OpenCL(Open Computing Language&#xff0c;开放计算语言) 最早由苹果公司提交草案&#xff0c;并于 AMD, IBM ,intel 和 n…...

自定义注解加 AOP 实现服务接口鉴权以及内部认证

注解 何谓注解&#xff1f; 在Java中&#xff0c;注解&#xff08;Annotation&#xff09;是一种特殊的语法&#xff0c;用符号开头&#xff0c;是 Java5 开始引入的新特性&#xff0c;可以看作是一种特殊的注释&#xff0c;主要用于修饰类、方法或者变量&#xff0c;提供某些信…...

《软件工程概论》作业一:新冠疫情下软件产品设计(小区电梯实体按钮的软件替代方案)

课程说明&#xff1a;《软件工程概论》为浙江科技学院2018级软件工程专业在大二下学期开设的必修课。课程使用《软件工程导论&#xff08;第6版&#xff09;》&#xff08;张海藩等编著&#xff0c;清华大学出版社&#xff09;作为教材。以《软件设计文档国家标准GBT8567-2006》…...

基于Ernie-Bot打造语音对话功能

大模型场景实战培训&#xff0c;提示词效果调优&#xff0c;大模型应用定制开发&#xff0c;点击咨询 咨询热线&#xff1a;400-920-8999转2 GPT-4的语音对话功能前段时间在网上火了一把&#xff0c;许多人被其强大的自然语言处理能力和流畅的语音交互所吸引。现在&#xff0c;…...

动手学深度学习(李沐)PyTorch 第 3 章 线性神经网络

3.1 线性回归 线性回归是对n维输入的加权&#xff0c;外加偏差 线性回归可以看作是单层神经网络 回归问题中最常用的损失函数是平方误差函数。 平方误差可以定义为以下公式&#xff1a; 常数1/2不会带来本质的差别&#xff0c;但这样在形式上稍微简单一些 &#xff08;因为当…...

ROS理论与实践学习笔记——2 ROS通信机制之服务通信

服务通信也是ROS中一种极其常用的通信模式&#xff0c;服务通信是基于请求响应模式的&#xff0c;是一种应答机制。也即: 一个节点A向另一个节点B发送请求&#xff0c;B接收处理请求并产生响应结果返回给A&#xff0c;用于偶然的、对时时性有要求、有一定逻辑处理需求的数据传输…...

技术成神之路:设计模式(十八)适配器模式

介绍 适配器模式&#xff08;Adapter Pattern&#xff09;是一种结构型设计模式&#xff0c;它允许接口不兼容的类可以协同工作&#xff0c;通过将一个类的接口转换成客户端所期望的另一个接口&#xff0c;使得原本由于接口不兼容而不能一起工作的类可以一起工作。 1.定义 适配…...

图神经网络:处理复杂关系结构与图分类任务的强大工具

创作不易&#xff0c;您的打赏、关注、点赞、收藏和转发是我坚持下去的动力&#xff01; 图神经网络&#xff08;Graph Neural Network, GNN&#xff09;是针对图数据的一类神经网络模型。图数据具有节点&#xff08;节点代表实体&#xff09;和边&#xff08;边代表节点之间的…...

LeetCode: 1971. 寻找图中是否存在路径

寻找图中是否存在路径 原题 有一个具有 n 个顶点的 双向 图&#xff0c;其中每个顶点标记从 0 到 n - 1&#xff08;包含 0 和 n - 1&#xff09;。图中的边用一个二维整数数组 edges 表示&#xff0c;其中 edges[i] [ui, vi] 表示顶点 ui 和顶点 vi 之间的双向边。 每个顶点…...

mysql 查询表所有数据,分页的语句

在 MySQL 中&#xff0c;若要从表中查询所有数据并实现分页&#xff0c;你可以使用 SELECT 语句结合 LIMIT 和 OFFSET 子句。LIMIT 用于指定返回的记录数&#xff0c;而 OFFSET 则用于指定从哪一条记录开始返回&#xff08;即跳过的记录数&#xff09;。 以下是一个基本的分页…...

TI DSP TMS320F280025 Note13:CPUtimer定时器原理分析与使用

TMS320F280025 CPUtimer定时器原理分析与使用 ` 文章目录 TMS320F280025 CPUtimer定时器原理分析与使用框图分析定时器中断定时器使用CPUtimers.cCPUtimers.h框图分析 定时器框图如图所示 定时器有一个预分频模块和一个定时/计数模块, 其中预分频模块包括一个 16 位的定时器分…...

Australis 相機率定軟體說明

概要 課堂中使用Australis這套軟體&#xff0c;順帶記錄操作過程 內容以老師口述及我測試的經過 照片為老師課堂提供之 說明 執行 Step1. 匯入照片 注意&#xff01;&#xff01;如果是Mac的作業系統&#xff0c;將資料夾移到Windows上的時候&#xff0c;建議創一個新的資料…...

C++入门(有C语言基础)

string类 string类初始化的方式大概有以下几种&#xff1a; string str1;string str2 "hello str2";string str3("hello str3");string str4(5, B);string str5[3] {"Xiaomi", "BYD", "XPeng"};string str6 str5[2];str…...

第四届高性能计算与通信工程国际学术会议(HPCCE 2024)

目录 大会简介 主办单位&#xff0c;承办单位 征稿主题 会议议程 参会方式 大会官网&#xff1a;www.hpcce.net 大会简介 第四届高性能计算与通信工程国际学术会议&#xff08;HPCCE 2024&#xff09;将于2024年11月22-24日在苏州召开。HPCCE 2024将围绕“高性能计算与通信工…...

负载均衡架构解说

负载均衡架构是一种设计模式&#xff0c;用于在多个服务器之间分配网络或应用流量&#xff0c;以提高资源利用率、最大化吞吐量、减少响应时间&#xff0c;并确保高可用性。 负载均衡架构的关键组件和概念&#xff1a; 关键组件 1.负载均衡器&#xff08;Load Balancer&…...

【异常数据检测】孤立森林算法异常数据检测算法(数据可视化 Matlab语言)

摘要 本文研究了基于孤立森林算法的异常数据检测方法&#xff0c;并在MATLAB中实现了该算法的可视化。孤立森林是一种无监督的异常检测算法&#xff0c;主要通过构建决策树来区分正常数据和异常数据。本文使用真实数据集&#xff0c;通过二维可视化展示了检测结果。实验结果表…...

淄博营销网站建设公司/做网络推广的公司

/************关于本文档******************************************** *filename: Linux下各类TCP网络服务器的实现源代码 *purpose: 记录Linux下各类tcp服务程序源代码 *wrote by: zhoulifa(zhoulifa163.com) 周立发(http://zhoulifa.bokee.com) Linux爱好者 Linux知识传…...

阿里备案成功后怎么做网站/怎样才能注册自己的网站

最近更新的博客 华为OD机试题 - 字符串加密(JavaScript) 华为OD机试题 - 字母消消乐(JavaScript) 华为OD机试题 - 字母计数(JavaScript) 华为OD机试题 - 整数分解(JavaScript) 华为OD机试题 - 单词反转(JavaScript) 华为OD机试题 最近更新的博客使用说明符合条件的子…...

青岛知名网站建设公司/百度推广登录平台网址

导读&#xff1a;一直以来&#xff0c;众多学校教学以及公司开发环境所使用Visual Studio .NET Framework版本多不相同&#xff0c;本文作者比较了.NET Framework多个版本之间的区别&#xff0c;方便各位选择和切换.NET Framework。 版本号发布日期Visual Studio的版本Windows上…...

网站建设氺金手指排名15/湖南企业竞价优化

发布一个k8s部署视频&#xff1a;https://edu.csdn.net/course/detail/26967 课程内容&#xff1a;各种k8s部署方式。包括minikube部署&#xff0c;kubeadm部署&#xff0c;kubeasz部署&#xff0c;rancher部署&#xff0c;k3s部署。包括开发测试环境部署k8s&#xff0c;和生产…...

河北做网站找谁/网络推广公司联系方式

jvm参数配置解析 参数说明-Xmx2048M JVM最大堆内存 -Xms2048M JVM最初始堆内存 -Xmn256MJVM年轻代大小&#xff08;整个堆大小年轻代大小 年老代大小 持久代大小 。持久代一般固定大小为64m&#xff09;-XX:MaxMetaspaceSize256MMaxMetaspaceSize是没有上限的&#xff0c;最…...

股票交易网站建设/网络产品及其推广方法

让我们来看一下与数字签名并行的一个有用技巧&#xff0c;基本想法是从数字签名模式中拿出一个公共验证密钥&#xff0c;并将其与一个 人或一个系统参与者的身份对等。如果你见到一条消息的签名被公钥pk正确验证&#xff0c;那么你可以认为pk就是在表达这条消息。你真的可以将公…...