LeetCode: 1971. 寻找图中是否存在路径
寻找图中是否存在路径
原题
有一个具有 n 个顶点的 双向 图,其中每个顶点标记从 0 到 n - 1(包含 0 和 n - 1)。图中的边用一个二维整数数组 edges 表示,其中 edges[i] = [ui, vi] 表示顶点 ui 和顶点 vi 之间的双向边。 每个顶点对由 最多一条 边连接,并且没有顶点存在与自身相连的边。
请你确定是否存在从顶点 source 开始,到顶点 destination 结束的 有效路径。
给你数组 edges 和整数 n、source 和 destination,如果从 source 到 destination 存在 有效路径 ,则返回 true,否则返回 false 。
示例 1:(图片转存自LeetCode)

输入:n = 3, edges = [[0,1],[1,2],[2,0]], source = 0, destination = 2
输出:true
解释:存在由顶点 0 到顶点 2 的路径:
- 0 → 1 → 2
- 0 → 2
示例 2:

输入:n = 6, edges = [[0,1],[0,2],[3,5],[5,4],[4,3]], source = 0, destination = 5
输出:false
解释:不存在由顶点 0 到顶点 5 的路径.
提示:
1 <= n <= 2 * 1050 <= edges.length <= 2 * 105edges[i].length == 20 <= ui, vi <= n - 1ui != vi0 <= source, destination <= n - 1- 不存在重复边
- 不存在指向顶点自身的边
class Solution {public boolean validPath(int n, int[][] edges, int source, int destination) {}
}
解题思路
- 将图的边列表(二维整数数组
edges)转化为图的邻接表形式,以便快速访问每个节点的相邻节点信息。由于节点编号从0到n-1连续,故采用数组而非 HashMap 进行存储。 - 使用[[深度优先搜索]]递归地进行图的遍历。在遍历过程中,需要避免重复访问已经访问过的节点,因此使用一个
visited数组来记录哪些节点已经被访问过。 - 终止条件:
- 如果在遍历过程中找到了
destination,则可以立即返回true,表示路径存在。 - 如果遍历了所有可能的路径都没有找到
destination,则返回false,表示路径不存在。
- 如果在遍历过程中找到了
代码示例
class Solution {public boolean validPath(int n, int[][] edges, int source, int destination) {// 如果起点和终点是同一个点,直接返回 trueif (source == destination) return true;// 构建邻接表,用数组表示图List<Integer>[] graph = new ArrayList[n];for (int i = 0; i < n; i ++) {graph[i] = new ArrayList<>();}// 填充邻接表for (int[] edge : edges) {int fromNode = edge[0];int toNode = edge[1];graph[fromNode].add(toNode);graph[toNode].add(fromNode);}// 创建访问标记数组boolean[] visited = new boolean[n];// 使用 DFS 检查是否存在从 source 到 destination 的路径return dfs(graph, visited, source, destination);}private boolean dfs(List<Integer>[] graph, boolean[] visited, int node, int destination) {// 如果当前节点是目标节点,返回 trueif (node == destination) return true;// 标记当前节点为已访问visited[node] = true;// 遍历所有相邻节点for (int neighbor : graph[node]) {// 如果相邻节点没有访问过,进行递归 DFSif (!visited[neighbor]) {if (dfs(graph, visited, neighbor, destination)) {// 找到能到达终点的路径就返回 truereturn true;}}}// 所有路径都不能到达终点,返回 falsereturn false;}
}
优化思路
这是一个经典的并查集问题。通过并查集的数据结构,可以高效地判断两个节点是否连通。每次将两个节点的根节点连接在一起,最终只需检查 source 和 destination 是否有相同的根节点即可。
优化后代码
class Solution {private int[] parent;private int[] rank; // 树的高度数组public boolean validPath(int n, int[][] edges, int source, int destination) {parent = new int[n];rank = new int[n];// 初始化并查集:每个节点的父节点为自己,rank 初始化为 1for (int i = 0; i < n; i++) {parent[i] = i;rank[i] = 1;}// 遍历所有边,将两个节点连接(即在并查集中合并)for (int[] edge : edges) {union(edge[0], edge[1]);}// 检查起始节点和目标节点是否在同一集合中return find(source) == find(destination);}// 查找某个节点的根节点,同时进行路径压缩private int find(int x) {if (parent[x] != x) { // 如果当前节点不是它自己的父节点,则继续向上查找parent[x] = find(parent[x]);}return parent[x];}// 合并两个集合,使用 rank 优化合并private void union(int x, int y) {int rootX = find(x);int rootY = find(y);if (rootX != rootY) {// 比较两个集合的 rank,rank 小的合并到大的上if (rank[rootX] > rank[rootY]) {parent[rootY] = rootX; // 将 y 的根节点挂到 x 的根节点上} else if (rank[rootX] < rank[rootY]) {parent[rootX] = rootY; // 将 x 的根节点挂到 y 的根节点上} else {parent[rootY] = rootX; // 如果 rank 相同,随意合并,但要增加新根的 rankrank[rootX]++;}}}
}相关文章:
LeetCode: 1971. 寻找图中是否存在路径
寻找图中是否存在路径 原题 有一个具有 n 个顶点的 双向 图,其中每个顶点标记从 0 到 n - 1(包含 0 和 n - 1)。图中的边用一个二维整数数组 edges 表示,其中 edges[i] [ui, vi] 表示顶点 ui 和顶点 vi 之间的双向边。 每个顶点…...
mysql 查询表所有数据,分页的语句
在 MySQL 中,若要从表中查询所有数据并实现分页,你可以使用 SELECT 语句结合 LIMIT 和 OFFSET 子句。LIMIT 用于指定返回的记录数,而 OFFSET 则用于指定从哪一条记录开始返回(即跳过的记录数)。 以下是一个基本的分页…...
TI DSP TMS320F280025 Note13:CPUtimer定时器原理分析与使用
TMS320F280025 CPUtimer定时器原理分析与使用 ` 文章目录 TMS320F280025 CPUtimer定时器原理分析与使用框图分析定时器中断定时器使用CPUtimers.cCPUtimers.h框图分析 定时器框图如图所示 定时器有一个预分频模块和一个定时/计数模块, 其中预分频模块包括一个 16 位的定时器分…...
Australis 相機率定軟體說明
概要 課堂中使用Australis這套軟體,順帶記錄操作過程 內容以老師口述及我測試的經過 照片為老師課堂提供之 說明 執行 Step1. 匯入照片 注意!!如果是Mac的作業系統,將資料夾移到Windows上的時候,建議創一個新的資料…...
C++入门(有C语言基础)
string类 string类初始化的方式大概有以下几种: string str1;string str2 "hello str2";string str3("hello str3");string str4(5, B);string str5[3] {"Xiaomi", "BYD", "XPeng"};string str6 str5[2];str…...
第四届高性能计算与通信工程国际学术会议(HPCCE 2024)
目录 大会简介 主办单位,承办单位 征稿主题 会议议程 参会方式 大会官网:www.hpcce.net 大会简介 第四届高性能计算与通信工程国际学术会议(HPCCE 2024)将于2024年11月22-24日在苏州召开。HPCCE 2024将围绕“高性能计算与通信工…...
负载均衡架构解说
负载均衡架构是一种设计模式,用于在多个服务器之间分配网络或应用流量,以提高资源利用率、最大化吞吐量、减少响应时间,并确保高可用性。 负载均衡架构的关键组件和概念: 关键组件 1.负载均衡器(Load Balancer&…...
【异常数据检测】孤立森林算法异常数据检测算法(数据可视化 Matlab语言)
摘要 本文研究了基于孤立森林算法的异常数据检测方法,并在MATLAB中实现了该算法的可视化。孤立森林是一种无监督的异常检测算法,主要通过构建决策树来区分正常数据和异常数据。本文使用真实数据集,通过二维可视化展示了检测结果。实验结果表…...
MKV转MP4丨FFmpeg的简单命令使用——视频格式转换
MKV是一种视频封装格式,很好用,也是OBS的默认推荐录制格式,因为不会突然断电关机而导致整个视频录制文件丢失。 但是MKV无法直接导入PR中剪辑,最直接的方法是将MKV转换为MP4格式,最方便且安全无损的转换方法便是用FFmp…...
git使用“保姆级”教程4——版本回退及分支讲解
一、版本回退 1、历史回退(版本回退)——命令行git reset --hard 版本编号 注意:当前命令会让工作区的内容发生改变,可以理解成历史区(master分支)直接回到工作区比如:从版本4回到版本3,则工作区只会显示版本3的代码内容 1.1、指…...
spring cache,Spring data redis
本项目使用Redis存储缓存数据,如何通过Java去访问Redis? 常用的有Jedis和Lettuce两个访问redis的客户端类库 ,Jedis和Lettuce都是redis提供的。其中Lettuce的性能和并发性要好一些,Spring Boot 默认使用的是 Lettuce 作为 Redis …...
10.数据结构与算法-线性表的应用(线性表与有序表的合并)
线性表的合并 有序表的合并 顺序表 链表...
GAN|对抗| 生成器更新|判别器更新过程
如上图所示,生成对抗网络存在上述内容: 真实数据集;生成器;生成器损失函数;判别器;判别器损失函数;生成器、判别器更新(生成器和判别器就是小偷和警察的关系,他们共用的…...
day01——登录功能
逻辑: 前端将登录信息通过报文的形式,发送给后端。后端进行登陆验证 2.1 根据接受的用户名,查询数据表。 若不存在该用户的记录,返回用户不存在。 若用户存在,判断数据库中的密码和接收的是否一致,不一致则…...
Flutter中使用FFI的方式链接C/C++的so库(harmonyos)
Flutter中使用FFI的方式链接C/C库(harmonyos) FFI plugin创建和so的配置FFI插件对so库的使用 FFI plugin创建和so的配置 首先我们可以根据下面的链接生成FFI plugin插件:开发FFI plugin插件 然后在主项目中pubspec.yaml 添加插件的依赖路径&…...
【C++】二义性
在C中,二义性(ambiguity)通常指的是编译器无法确定使用哪个函数、变量或类成员的情况。这种不确定性通常是由于继承和多态特性导致的。下面是一些常见的产生二义性的场景以及如何解决它们的方法: 1. 多重继承中的二义性 当一个类…...
高并发内存池(五):ThreadCache、CentralCache和PageCache的内存回收机制、阶段性代码展示和释放内存过程的调试
目录 ThreadCache的内存回收机制 补充内容1 补充内容2 补充内容3 补充内容4 ListTooLong函数的实现 CentralCache的内存回收机制 MapObjectToSpan函数的实现 ReleaseListToSpans函数的实现 PageCache的内存回收机制 补充内容1 补充内容2 ReleaseSpanToPageCache函…...
STL之stackqueue篇(上)探索C++ STL中的Queue与Stack——构建数据处理的基础框架
文章目录 前言一、stack1.1 定义与基本概念1.2 底层容器1.3 成员函数1.4 使用示例1.5 注意事项1.6 应用场景 二、queue2.1 定义与基本概念2.2 底层容器2.3 成员函数2.4 使用示例2.5 注意事项2.6 应用场景 前言 本文旨在深入探讨C STL中的queue与stack容器,从它们的…...
代码随想录算法训练营Day13
110.平衡二叉树 力扣题目链接:. - 力扣(LeetCode) 后序迭代 class Solution {public boolean isBalanced(TreeNode root) {return getHeight(root)!-1;}public int getHeight(TreeNode root){if(rootnull){return 0;}int leftheightgetHei…...
基于STM32的智能门禁系统
目录 引言项目背景环境准备 硬件准备软件安装与配置系统设计 系统架构关键技术代码示例 RFID数据采集与处理门禁控制实现显示与报警功能应用场景结论 1. 引言 智能门禁系统在现代安防中占据重要地位,通常用于控制进入和离开特定区域的权限。通过基于STM32微控制器…...
8k长序列建模,蛋白质语言模型Prot42仅利用目标蛋白序列即可生成高亲和力结合剂
蛋白质结合剂(如抗体、抑制肽)在疾病诊断、成像分析及靶向药物递送等关键场景中发挥着不可替代的作用。传统上,高特异性蛋白质结合剂的开发高度依赖噬菌体展示、定向进化等实验技术,但这类方法普遍面临资源消耗巨大、研发周期冗长…...
学校招生小程序源码介绍
基于ThinkPHPFastAdminUniApp开发的学校招生小程序源码,专为学校招生场景量身打造,功能实用且操作便捷。 从技术架构来看,ThinkPHP提供稳定可靠的后台服务,FastAdmin加速开发流程,UniApp则保障小程序在多端有良好的兼…...
postgresql|数据库|只读用户的创建和删除(备忘)
CREATE USER read_only WITH PASSWORD 密码 -- 连接到xxx数据库 \c xxx -- 授予对xxx数据库的只读权限 GRANT CONNECT ON DATABASE xxx TO read_only; GRANT USAGE ON SCHEMA public TO read_only; GRANT SELECT ON ALL TABLES IN SCHEMA public TO read_only; GRANT EXECUTE O…...
MODBUS TCP转CANopen 技术赋能高效协同作业
在现代工业自动化领域,MODBUS TCP和CANopen两种通讯协议因其稳定性和高效性被广泛应用于各种设备和系统中。而随着科技的不断进步,这两种通讯协议也正在被逐步融合,形成了一种新型的通讯方式——开疆智能MODBUS TCP转CANopen网关KJ-TCPC-CANP…...
C++中string流知识详解和示例
一、概览与类体系 C 提供三种基于内存字符串的流,定义在 <sstream> 中: std::istringstream:输入流,从已有字符串中读取并解析。std::ostringstream:输出流,向内部缓冲区写入内容,最终取…...
12.找到字符串中所有字母异位词
🧠 题目解析 题目描述: 给定两个字符串 s 和 p,找出 s 中所有 p 的字母异位词的起始索引。 返回的答案以数组形式表示。 字母异位词定义: 若两个字符串包含的字符种类和出现次数完全相同,顺序无所谓,则互为…...
根据万维钢·精英日课6的内容,使用AI(2025)可以参考以下方法:
根据万维钢精英日课6的内容,使用AI(2025)可以参考以下方法: 四个洞见 模型已经比人聪明:以ChatGPT o3为代表的AI非常强大,能运用高级理论解释道理、引用最新学术论文,生成对顶尖科学家都有用的…...
智能分布式爬虫的数据处理流水线优化:基于深度强化学习的数据质量控制
在数字化浪潮席卷全球的今天,数据已成为企业和研究机构的核心资产。智能分布式爬虫作为高效的数据采集工具,在大规模数据获取中发挥着关键作用。然而,传统的数据处理流水线在面对复杂多变的网络环境和海量异构数据时,常出现数据质…...
Go 语言并发编程基础:无缓冲与有缓冲通道
在上一章节中,我们了解了 Channel 的基本用法。本章将重点分析 Go 中通道的两种类型 —— 无缓冲通道与有缓冲通道,它们在并发编程中各具特点和应用场景。 一、通道的基本分类 类型定义形式特点无缓冲通道make(chan T)发送和接收都必须准备好࿰…...
站群服务器的应用场景都有哪些?
站群服务器主要是为了多个网站的托管和管理所设计的,可以通过集中管理和高效资源的分配,来支持多个独立的网站同时运行,让每一个网站都可以分配到独立的IP地址,避免出现IP关联的风险,用户还可以通过控制面板进行管理功…...
